Skip to main content

Abstract

Surgery for correction of pediatric scoliosis typically involves an extensive multilevel instrumented fusion of the spine and is associated with a risk of major blood loss, hemodynamic instability, increased transfusion requirements, neurological injury, postoperative pulmonary dysfunction, and positioning-related complications. Complexity of the surgery, as well as the incidence and severity of complications, is higher in patients with nonidiopathic scoliosis (e.g., neuromuscular scoliosis, congenital scoliosis) as compared to those with adolescent idiopathic scoliosis. Perioperatively, the neuroanesthetist takes several perioperative measures to decrease the incidence of these complications, including a comprehensive preoperative evaluation for detection of potential risk factors; preoperative optimization of modifiable risk factors such as cardiopulmonary dysfunction, anemia, and poor nutritional status; intraoperative administration of antifibrinolytics and “targeted blood pressure management” for reduction of intraoperative blood loss; implementation of “spinal cord protection measures” and multimodality neuromonitoring for preservation of the neurologic integrity; and meticulous postoperative care with a multimodal pain relief and an early mobilization strategy. The choice of anesthetic drugs for these surgeries is largely determined by their compatibility with neuroelectrophysiological monitoring. Patients with nonidiopathic scoliosis merit a more intensive and multidisciplinary approach, for a better clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Saltikov JB, Weiss HR, Chockalingam N, et al. A comparison of patient-reported outcome measures following different treatment approaches for adolescents with severe idiopathic scoliosis: a systematic review. Asian Spine J. 2016;10(6):1170–94.

    Google Scholar 

  2. Farady JA. Current principles in the nonoperative management of structural adolescent idiopathic scoliosis. Phys Ther. 1983;63(4):512–23.

    CAS  PubMed  Google Scholar 

  3. Gambrall MA. Anesthetic implications for surgical correction of scoliosis. AANA J. 2007;75(4):277–85.

    PubMed  Google Scholar 

  4. Negrini S, Donzelli S, Aulisa AG, et al. 2016 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis Spinal Disord. 2018;13(1):3.

    PubMed  PubMed Central  Google Scholar 

  5. Yaman O, Dalbayrak S. Idiopathic scoliosis. Turk Neurosurg. 2014;24(5):646–57.

    PubMed  Google Scholar 

  6. Scoliosis Research Society Terminology Committee. A glossary of scoliosis terms. Spine. 1976;1(3):57–8.

    Google Scholar 

  7. Gibson PR. Anaesthesia for correction of scoliosis in children. Anaesth Intensive Care. 2004;32:548–59. PubMed: 15675216.

    CAS  PubMed  Google Scholar 

  8. Dunn J, Henrikson NB, Morrison CC, et al. Screening for adolescent idiopathic scoliosis, evidence report and systematic review for the US preventive. JAMA. 2018;319(2):173–87.

    PubMed  Google Scholar 

  9. Bunnell WP. The natural history of idiopathic scoliosis before skeletal maturity. Spine. 1986;11:773–6.

    CAS  PubMed  Google Scholar 

  10. Konieczny MR, Senyurt H, Krauspe R. Epidemiology of adolescent idiopathic scoliosis. J Child Orthop. 2013;7(1):3–9.

    PubMed  Google Scholar 

  11. Glover CD, Carling NP. Neuromonitoring for scoliosis surgery. Anesthesiol Clin. 2014;32:101–14.

    PubMed  Google Scholar 

  12. Asher MA, Burton DC. Adolescent idiopathic scoliosis: natural history and long-term treatment effects. Scoliosis. 2006;1(1):2. https://doi.org/10.1186/1748-7161-1-2./1.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Robinson CM, McMaster MJ. Juvenile idiopathic scoliosis. Curve patterns and prognosis in one hundred and nine patients. J Bone Joint Surg Am. 1996;78(8):1140–8.

    CAS  PubMed  Google Scholar 

  14. McMaster M. Infantile idiopathic scoliosis: can it be prevented? J Bone Joint Surg Br. 1983;65:612–7.

    CAS  PubMed  Google Scholar 

  15. Lloyd-Roberts GC, pilcher MF. Structural idiopathic scoliosis in infancy: a study of the natural history of 100 patients. J Bone Joint Surg Br. 1965;47:520–3.

    CAS  PubMed  Google Scholar 

  16. Ceballos T, Ferrer-Torrelles M, Castillo F, Fernandez-Paredes E. Prognosis in infantile idiopathic scoliosis. J Bone Joint Surg Am. 1980;62(6):863–75.

    CAS  PubMed  Google Scholar 

  17. Hodgkinson I, Bérard C, Chotel F, et al. Pelvic obliquity and scoliosis in non-ambulatory patients with cerebral palsy: a descriptive study of 234 patients over 15 years of age. Rev Chir Orthop Reparatrice Appar Mot. 2002;88:337–41.

    CAS  PubMed  Google Scholar 

  18. Basu PS, Elsebaie H, Noordeen MH. Congenital spinal deformity: a comprehensive assessment at presentation. Spine (Phila Pa 1976). 2002;27:2255–9.

    Google Scholar 

  19. Polly WD Jr, Larson Noel A. Pediatric and adult scoliosis. In: Ellenbogen RG, Abdulrauf SI, Sekhar LN, editors. Principles of neurosurgery. 3rd ed. Philadelphia: Elsevier Saunders; 2012. p. 497–508.

    Google Scholar 

  20. Lenke LG, Betz RR, Harms J, et al. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am. 2001;83:1169–81.

    CAS  PubMed  Google Scholar 

  21. Grauers A, Einarsdottir E, Gerdhem P. Genetics and pathogenesis of idiopathic scoliosis. Scoliosis Spinal Disord. 2016;11:45.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Fadzan M, Saltikov JB. Etiological theories of adolescent idiopathic scoliosis: past and present. Open Orthop J. 2017;11(Suppl-9, M3):1466–89.

    PubMed  PubMed Central  Google Scholar 

  23. Newton Ede MM, Jones SW. Adolescent idiopathic scoliosis: evidence for intrinsic factors driving aetiology and progression. Int Orthop. 2016;40(10):2075–80.

    PubMed  Google Scholar 

  24. Weinstein SL, Dolan LA, Spratt KF, Peterson KK, Spoonamore MJ, Ponseti IV. Health and function of patients with untreated idiopathic scoliosis: a 50-year natural history study. JAMA. 2003;289(5):559–67.

    PubMed  Google Scholar 

  25. Negrini S, Grivas TB, Kotwicki T, Maruyama T, Rigo M, Weiss HR, et al. Why do we treat adolescent idiopathic scoliosis? What we want to obtain and to avoid for our patients. SOSORT 2005 consensus paper. Scoliosis. 2006;1:4.

    PubMed  PubMed Central  Google Scholar 

  26. Koumbourlis AC. Scoliosis and the respiratory system. Paediatr Respir Rev. 2006;7:152–60.

    PubMed  Google Scholar 

  27. Saltikov JB, Turnbull D, Ng SY, et al. Management of spinal deformities and evidence of treatment effectiveness. Open Orthop J. 2017;11:1521–47.

    Google Scholar 

  28. Lonstein JE, Carlson JM. The prediction of curve progression in untreated idiopathic scoliosis during growth. J Bone Joint Surg Am. 1984;66(7):1061–71. https://doi.org/10.2106/00004623-198466070-00013.

    Article  CAS  PubMed  Google Scholar 

  29. Weinstein SL, Zavala DC, Ponseti IV. Idiopathic scoliosis: long-term follow-up and prognosis in untreated patients. J Bone Joint Surg Am. 1981;63(5):702–12. https://doi.org/10.2106/00004623-198163050-00003.

    Article  CAS  PubMed  Google Scholar 

  30. Weinstein SL, Ponseti IV. Curve progression in idiopathic scoliosis. J Bone Joint Surg Am. 1983;65(4):447–55. https://doi.org/10.2106/00004623-198365040-00004.

    Article  CAS  PubMed  Google Scholar 

  31. Tan KJ, Moe MM, Vaithinathan R, Wong HK. Curve progression in idiopathic scoliosis: follow-up study to skeletal maturity. Spine (Phila Pa 1976). 2009;34(7):697–700.

    Google Scholar 

  32. Mehta MH. The rib-vertebra angle in the early diagnosis between resolving and progressive infantile scoliosis. J Bone Joint Surg Br. 1972;54(2):230–43.

    CAS  PubMed  Google Scholar 

  33. Reames DL, Smith JS, Fu KMG, Polly DW, Ames CP, Berven SH, et al. Complications in the surgical treatment of 19,360 cases of pediatric scoliosis: a review of the scoliosis research society morbidity and mortality database. Spine. 2011;36(18):1484–91. https://doi.org/10.1097/BRS.0b013e3181f3a326.

    Article  PubMed  Google Scholar 

  34. Saito N, Ebara S, Ohotsuka K, et al. Natural history of scoliosis in spastic cerebral palsy. Lancet. 1998;351:1687–92. https://doi.org/10.1016/S0140-6736(98)01302-6.

    Article  CAS  PubMed  Google Scholar 

  35. Thometz JG, Simon SR. Progression of scoliosis after skeletal maturity in institutionalized adults who have cerebral palsy. J Bone Joint Surg Am. 1988;70:1290–6.

    CAS  PubMed  Google Scholar 

  36. Tsiligiannis T, Grivas T. Pulmonary function in children with idiopathic scoliosis. Scoliosis. 2012;7:7.

    PubMed  PubMed Central  Google Scholar 

  37. Johari J, Sharifudin MA, Rahman AA, et al. Relationship between pulmonary function and degree of spinal deformity, location of apical vertebrae and age among adolescent idiopathic scoliosis patients. Singap Med J. 2016;57(1):33–8. https://doi.org/10.11622/smedj.2016009. PubMed PMID: 26831315; PubMed Central PMCID: PMC4728701.

    Article  Google Scholar 

  38. Muirhead A, Conner AN. The assessment of lung function in children with scoliosis. J Bone Joint Surg Br. 1985;67-B:699–702.

    Google Scholar 

  39. Kulkarni AH, Ambareesha M. Scoliosis and anesthetic considerations. Indian J Anaesth. 2007;51:486–95.

    Google Scholar 

  40. Hirshfield S, Rudner C, Nash CL Jr, et al. Incidence of mitral valve prolapse in adolescent scoliosis and thoracic hypokyphosis. Pediatrics. 1982;70:451.

    Google Scholar 

  41. Primiano FP Jr, Nussbaum E, Hirschfeld SS, Nash CL, Horowitz JG, Lough MD, et al. Early echocardiographic and pulmonary function findings in idiopathic scoliosis. J Pediatr Orthop. 1983;3:475–81.

    PubMed  Google Scholar 

  42. Entwistle MA, Patel D. Scoliosis in children. Cont Educ Anaesth Crit Care Pain. 2006;6:13–6.

    Google Scholar 

  43. Johnston CE, Richards BS, Sucato DJ, Bridwell KH, Lenke LG, Erickson M. Correlation of preoperative deformity magnitude and pulmonary function tests in adolescent idiopathic scoliosis. Spine. 2011;36(14):1096–102.

    PubMed  Google Scholar 

  44. Newton PO, Faro FD, Gollogly S, Betz RR, Lenke LG, Lowe TG. Results of preoperative pulmonary function testing of adolescents with idiopathic scoliosis. A study of six hundred and thirty-one patients. J Bone Joint Surg Am. 2005;87(9):1937–46.

    PubMed  Google Scholar 

  45. Kearon C, Viviani GR, Kirkley A, Killian KJ. Factors determining pulmonary function in adolescent idiopathic thoracic scoliosis. Am Rev Respir Dis. 1993;148(2):288–94.

    CAS  PubMed  Google Scholar 

  46. Upadhyay SS, Mullaji AB, Luk KD, Leong JC. Evaluation of deformities and pulmonary function in adolescent idiopathic right thoracic scoliosis. Eur Spine J. 1995;4(5):274–9.

    CAS  PubMed  Google Scholar 

  47. Branthwaite MA. Cardiorespiratory consequences of unfused idiopathic scoliosis. Br J Dis Chest. 1986;80(4):360–9.

    CAS  PubMed  Google Scholar 

  48. Martínez-Llorens J, Ramírez M, et al. Muscle dysfunction and exercise limitation in adolescent idiopathic scoliosis. Eur Respir J. 2010;36(2):393–400.

    PubMed  Google Scholar 

  49. Lin MC, Liaw MY, Chen WJ, Cheng PT, Wong AM, Chiou WK. Pulmonary function and spinal characteristics: their relationships in persons with idiopathic and postpoliomyelitic scoliosis. Arch Phys Med Rehabil. 2001;823:335–41.

    Google Scholar 

  50. Kurz LT, Mubarak SJ, Schultz P, Park SM, Leach J. Correlation of scoliosis and pulmonary function in Duchenne muscular dystrophy. J Pediatr Orthop. 1983;3:347–53.

    CAS  PubMed  Google Scholar 

  51. Smith AD, Koreska J, Moseley CF. Progression of scoliosis in Duchenne muscular dystrophy. J Bone Joint Surg Am. 1989;71:1066–74.

    CAS  PubMed  Google Scholar 

  52. Ames WA, Hayes JA, Crawford MW. The role of corticosteroids in Duchenne muscular dystrophy: a review for the anaesthetist. Paediatr Anaesth. 2005;15:3–8.

    PubMed  Google Scholar 

  53. Eagle M, Baudouin SV, Chandler C, Giddings DR, Bullock R, Bushby K. Survival in Duchenne muscular dystrophy: improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. Neuromuscul Disord. 2002;12:926–9.

    PubMed  Google Scholar 

  54. Tarpada SP, Morris MT. Minimally invasive surgery in the treatment of adolescent idiopathic scoliosis: a literature review and meta-analysis. J Orthop. 2016;14(1):19–22. https://doi.org/10.1016/j.jor.2016.10.006. PubMed PMID: 27818581; PubMed Central PMCID: PMC5080743.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Newton PO, Marks M, Faro F, et al. Use of video-assisted thoracoscopic surgery to reduce perioperative morbidity in scoliosis surgery. Spine (Phila Pa 1976). 2003;28:S249–54.

    Google Scholar 

  56. Olgun ZD, Yazici M. Posterior instrumentation and fusion. J Child Orthop. 2013;7(1):69–76. https://doi.org/10.1007/s11832-012-0456-5.

    Article  PubMed  Google Scholar 

  57. de Kleuver M, Lewis SJ, Germscheid NM, et al. Optimal surgical care for adolescent idiopathic scoliosis: an international consensus. Eur Spine J. 2014;23:2603–18. https://doi.org/10.1007/s00586-014-3356-1.

    Article  PubMed  Google Scholar 

  58. Muschik MT, Kimmich H, Demmel T. Comparison of anterior and posterior double-rod instrumentation for thoracic idiopathic scoliosis: results of 141 patients. Eur Spine J. 2006;15:1128–38.

    PubMed  PubMed Central  Google Scholar 

  59. Maruyama T, Takeshita K. Surgery for idiopathic scoliosis: currently applied techniques. Clin Med Pediatr. 2009;3:39–44.

    PubMed  PubMed Central  Google Scholar 

  60. De la Garza Ramos R, Goodwin CR, Abu-Bonsrah N, et al. Patient and operative factors associated with complications following adolescent idiopathic scoliosis surgery: an analysis of 36,335 patients from the Nationwide Inpatient Sample. J Neurosurg Pediatr. 2016;25(6):730–6.

    PubMed  Google Scholar 

  61. Koerner JD, Patel A, Zhao C, Schoenberg C, Mishra A, Vives MJ, et al. Blood loss during posterior spinal fusion for adolescent idiopathic scoliosis. Spine. 2014;39(18):1479–87.

    PubMed  Google Scholar 

  62. Fletcher ND, Marks MC, Asghar JK, Hwang SW, Sponseller PD, Harms Study Group, Newton PO. Development of consensus based best practice guidelines for perioperative management of blood loss in patients undergoing posterior spinal fusion for adolescent idiopathic scoliosis. Spine Deform. 2018;6(4):424–9. https://doi.org/10.1016/j.jspd.2018.01.00.

    Article  PubMed  Google Scholar 

  63. Vitale MG, Skaggs DL, Pace GI, et al. Best practices in intraoperative neuromonitoring in spine deformity surgery: development of an intraoperative checklist to optimize response. Spine Deform. 2014;2:333–9.

    PubMed  Google Scholar 

  64. Ialenti MN, Lonner BS, Verma K. Predicting operative blood loss during spinal fusion for adolescent idiopathic scoliosis. J Pediatr Orthop. 2013;33(4):372–6.

    PubMed  Google Scholar 

  65. Fletcher ND, Shourbaji N, Mitchell PM, Oswald TS, Devito DP, Bruce RW. Clinical and economic implications of early discharge following posterior spinal fusion for adolescent idiopathic scoliosis. J Child Orthop. 2014;8(3):257–63.

    PubMed  PubMed Central  Google Scholar 

  66. Fletcher ND, Andras LM, Lazarus DE, et al. Use of a novel pathway for early discharge was associated with a 48% shorter length of stay after posterior spinal fusion for adolescent idiopathic scoliosis. J Pediatr Orthop. 2017;37:92–7.

    PubMed  Google Scholar 

  67. Yoshihara H, Yoneoka D. National trends in spinal fusion for pediatric patients with idiopathic scoliosis: demographics, blood transfusions, and in-hospital outcomes. Spine (Phila Pa 1976). 2014;39:1144–50.

    Google Scholar 

  68. Yoshihara H, Yoneoka D. Predictors of allogeneic blood transfusion in spinal fusion for pediatric patients with idiopathic scoliosis in the United States, 2004-2009. Spine (Phila Pa 1976). 2014;39:1860–7.

    Google Scholar 

  69. Kim HJ, Park HS, Jang MJ, et al. Predicting massive transfusion in adolescent idiopathic scoliosis patients undergoing corrective surgery: association of preoperative radiographic findings. Medicine (Baltimore). 2018;97(22):e10972.

    Google Scholar 

  70. Coe JD, Arlet V, Donaldson W, et al. Complications in spinal fusion for adolescent idiopathic scoliosis in the new millennium. A report of the Scoliosis Research Society Morbidity and Mortality Committee. Spine (Phila Pa 1976). 2006;31(3):345–9.

    Google Scholar 

  71. Murphy RF, Mooney JF 3rd. Complications following spine fusion for adolescent idiopathic scoliosis. Curr Rev Musculoskelet Med. 2016;9(4):462–9. https://doi.org/10.1007/s12178-016-9372-5.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Borden TC, Bellaire LL, Fletcher ND. Improving perioperative care for adolescent idiopathic scoliosis patients: the impact of a multidisciplinary care approach. J Multidiscip Healthc. 2016;9:435–45. https://doi.org/10.2147/JMDH.S95319. PubMed PMID: 27695340; PubMed Central PMCID: PMC5028162.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Vitale MG, Moore DW, Matsumoto H, et al. Risk factors for spinal cord injury during surgery for spinal deformity. J Bone Joint Surg Am. 2010;92:64–71.

    PubMed  Google Scholar 

  74. Devlin VJ, Schwartz DM. Intraoperative neurophysiologic monitoring during spinal surgery. J Am Acad Orthop Surg. 2007;15(9):549–60.

    PubMed  Google Scholar 

  75. DePasse JM, Palumbo MA, Haque M, Eberson CP, Daniels AH. Complications associated with prone positioning in elective spinal surgery. World J Orthop. 2015;6(3):351–9.

    PubMed  PubMed Central  Google Scholar 

  76. Practice Advisory for the Prevention of Perioperative Peripheral Neuropathies 2018: an updated report by the American Society of Anesthesiologists Task Force on Prevention of Perioperative Peripheral Neuropathies. Anesthesiology. 2018;128(1):11–26. https://doi.org/10.1097/ALN.0000000000001937.

  77. De la Garza-Ramos R, Samdani AF, Sponseller PD, Ain MC, Miller NR, Shaffrey CI, et al. Visual loss after corrective surgery for pediatric scoliosis: incidence and risk factors from a nationwide database. Spine J. 2016;16:516–22.

    PubMed  Google Scholar 

  78. Lao L, Weng X, Qiu G, Shen J. The role of preoperative pulmonary function tests in the surgical treatment of extremely severe scoliosis. J Orthop Surg Res. 2013;8:32.

    PubMed  PubMed Central  Google Scholar 

  79. Zhang JG, Wang W, Qiu GX, et al. The role of preoperative pulmonary function tests in the surgical treatment of scoliosis. Spine (Phila Pa 1976). 2005;30:218–21.

    CAS  Google Scholar 

  80. Yuan N, Fraire JA, Margetis MM, Skaggs DL, Tolo VT, Keens TG. The effect of scoliosis surgery on lung function in the immediate postoperative period. Spine. 2005;30(19):2182–5.

    PubMed  Google Scholar 

  81. Yaszay B, Jazayeri R, Lonner B. The effect of surgical approaches on pulmonary function in adolescent idiopathic scoliosis. J Spinal Disord Tech. 2009;22(4):278–83.

    PubMed  Google Scholar 

  82. Yuan N, Skaggs DL, Dorey F, Keens TG. Preoperative predictors of prolonged postoperative mechanical ventilation in children following scoliosis repair. Pediatr Pulmonol. 2005;40:414–9.

    PubMed  Google Scholar 

  83. Shapiro F, Sethna N. Blood loss in pediatric spine surgery. Eur Spine J. 2004;13(Suppl 1):S6–S17.

    PubMed  PubMed Central  Google Scholar 

  84. Cloake T, Gardner A. The management of scoliosis in children with cerebral palsy: a review. J Spine Surg. 2016;2(4):299–309. https://doi.org/10.21037/jss.2016.09.05.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lipton GE, Miller F, Dabney KW, et al. Factors predicting postoperative complications following spinal fusions in children with cerebral palsy. J Spinal Disord. 1999;12:197–205.

    CAS  PubMed  Google Scholar 

  86. Bradford DS, Heithoff KB, Cohen M. Intraspinal abnormalities and congenital spine deformities: a radiographic and MRI study. J Pediatr Orthop. 1991;11(1):36–41. https://doi.org/10.1097/01241398-199101000-00009.

    Article  CAS  PubMed  Google Scholar 

  87. Miskovic A, Lumb AB. Postoperative pulmonary complications. Br J Anaesth. 2017;118:317–34.

    CAS  PubMed  Google Scholar 

  88. Kafer ER. Respiratory and cardiovascular functions in scoliosis and the principles of anesthetic management. Anesthesiology. 1980;32:339–51.

    Google Scholar 

  89. Wazeka AN, DiMaio MF, Boachie-Adjei O. Outcome of pediatric patients with severe restrictive lung disease following reconstructive spine surgery. Spine. 2004;29:528–34.

    PubMed  Google Scholar 

  90. Bach JR, Sabharwal S. High pulmonary risk scoliosis surgery: role of noninvasive ventilation and related techniques. J Spinal Disord Tech. 2005;18:527–30.

    PubMed  Google Scholar 

  91. Laupacis A, Ergusson D. Erythropoetin to minimize perioperative blood transfusion. A systematic review of randamozed trials. The international study of Peri-Operative Transfusion (IPSOT) Investigators. Transfus Med. 1998;8:309–17.

    CAS  PubMed  Google Scholar 

  92. Moran MM, Kroon D, Tredwell SJ, Wadsworth LD. The role of autologous blood transfusion in adolescents undergoing spinal surgery. Spine (Phila Pa 1976). 1995;20:532–6.

    CAS  Google Scholar 

  93. Bess RS, Lenke LG, Bridwell KH, et al. Wasting of preoperatively donated autologous blood in the surgical treatment of adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2006;31:2375–80.

    Google Scholar 

  94. Verma RR, Williamson JB, Dashti H, et al. Homologous blood transfusion is not required in surgery for adolescent idiopathic scoliosis. J Bone Joint Surg Br. 2006;88:1187–91.

    CAS  PubMed  Google Scholar 

  95. Drvaric DM, Roberts JM, Burke SW, King AG, Kenneth FS. Gastroesophageal evaluation in totally involved cerebral palsy patients. J Pediatr Orthop. 1987;7:187–90.

    CAS  PubMed  Google Scholar 

  96. Rappaport DI, Adelizzi-Delany J, Rogers KJ, et al. Outcomes and costs associated with hospitalist comanagement of medically complex children undergoing spinal fusion surgery. Hosp Pediatr. 2013;3(3):233–41.

    PubMed  Google Scholar 

  97. Jevsevar DS, Karlin LI. The relationship between preoperative nutritional status and complications after an operation for scoliosis in patients who have cerebral palsy. J Bone Joint Surg Am. 1993;75:880–4.

    CAS  PubMed  Google Scholar 

  98. Gurajala I, Ramachandran G, Iyengar R, Durga P. The preoperative and intraoperative risk factors for early postoperative mechanical ventilation after scoliosis surgery: a retrospective study. Indian J Anaesth. 2013;57:14–8. PMCID: PMC3658328; PubMed: 23716760.

    PubMed  PubMed Central  Google Scholar 

  99. Issac E, Menon G, Vasu BK, George M, Vasudevan A. Predictors of postoperative ventilation in scoliosis surgery: a retrospective analysis. Anesth Essays Res. 2018;12(2):407–11. https://doi.org/10.4103/aer.AER_18_18.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Mollmann M, Henning M, Liljenqvist U, Wenk M. A foam-cushion face mask and a see-through operation table: a new set-up for face protection and increased safety in prone position. Br J Anaesth. 2007;99(4):597–8. https://doi.org/10.1093/bja/aem248.

    Article  CAS  PubMed  Google Scholar 

  101. Bowen RE, Gardner S, Scaduto AA, Eagan M, Beckstead J. Efficacy of intraoperative cell salvage systems in pediatric idiopathic scoliosis patients undergoing posterior spinal fusion with segmental spinal instrumentation. Spine (Phila Pa 1976). 2010;35(2):246–51.

    Google Scholar 

  102. McNicol ED, Tzortzopoulou A, Schumann R, Carr DB, Kalra A. Antifibrinolytic agents for reducing blood loss in scoliosis surgery in children. Cochrane Database Syst Rev. 2016;(9):CD006883. https://doi.org/10.1002/14651858.CD006883.pub3.

  103. Dhawale AA, Shah SA, Sponseller PD, et al. Are antifibrinolytics helpful in decreasing blood loss and transfusions during spinal fusion surgery in children with cerebral palsy scoliosis? Spine (Phila Pa 1976). 2012;37:E549–55.

    Google Scholar 

  104. Newton PO, Bastrom TP, Emans JB, et al. Antifibrinolytic agents reduce blood loss during pediatric vertebral column resection procedures. Spine (Phila Pa 1976). 2012;37:E1459–63.

    Google Scholar 

  105. Sethna NF, Zurakowski D, Brustowicz RM, Bacsik J, Sullivan LJ, Shapiro F. Tranexamic acid reduces intraoperative blood loss in pediatric patients undergoing scoliosis surgery. Anesthesiology. 2005;102(4):727–32.

    CAS  PubMed  Google Scholar 

  106. Verma K, Errico T, Diefenbach C, et al. The relative efficacy of antifibrinolytics in adolescent idiopathic scoliosis: a prospective randomized trial. J Bone Joint Surg Am. 2014;96(10):e80.

    PubMed  Google Scholar 

  107. Grant JA, Howard J, Luntley J, Harder J, Aleissa S, Parsons D. Perioperative blood transfusion requirements in pediatric scoliosis surgery: the efficacy of tranexamic acid. J Pediatr Orthop. 2009;29(3):300–4.

    PubMed  Google Scholar 

  108. Verma K, Lonner B, Dean L, Vecchione D, Lafage V. Reduction of mean arterial pressure at incision reduces operative blood loss in adolescent idiopathic scoliosis. Spine Deform. 2013;1(2):115–22.

    PubMed  Google Scholar 

  109. Lawhon SM, Kahn IIIA, Crawford AH, et al. Controlled hypotensive anesthesia during spinal surgery: a retrospective study. Spine (Phila Pa 1976). 1984;9:450–3.

    CAS  Google Scholar 

  110. Patel NJ, Patel BS, Paskin S, Laufer S. Induced moderate hypotensive anesthesia for spinal fusion and Harrington-rod instrumentation. J Bone Joint Surg Am. 1985;67:1384–7.

    CAS  PubMed  Google Scholar 

  111. Grundy BL, Nash CL Jr, Brown RH. Deliberate hypotension for spinal fusion: prospective randomized study with evoked potential monitoring. Can Anaesth Soc J. 1982;29:452–62.

    CAS  PubMed  Google Scholar 

  112. Sharma A, Yadav M, Kumar BR, Lakshman PS, Iyenger R, Ramchandran G. A comparative study of Sterofundin and Ringer lactate based infusion protocol in scoliosis correction surgery. Anesth Essays Res. 2016;10(3):532–7. https://doi.org/10.4103/0259-1162.181425.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Bharadwaj A, Khandelwal M, Bhargava SK. Perioperative neonatal and paediatric blood transfusion. Indian J Anaesth. 2014;58(5):652–7. https://doi.org/10.4103/0019-5049.144679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cao X, Zhang X, Li Q. Efficacy of thromboelastography to monitor the clinical massive transfusion in scoliosis: a randomized controlled trial. Zhonghua Wai Ke Za Zhi. 2016;54(2):137–41.

    PubMed  Google Scholar 

  115. Halpin RJ, Sugrue PA, Gould RW, Kallas PG, Schafer MF, Ondra SL, et al. Standardizing care for high-risk patients in spine surgery: the northwestern high-risk spine protocol. Spine. 2010;35(25):2232–8.

    PubMed  Google Scholar 

  116. Laratta JL, Ha A, Shillingford JN, et al. Neuromonitoring in spinal deformity surgery: a multimodality approach. Global Spine J. 2018;8(1):68–77. https://doi.org/10.1177/2192568217706970.

    Article  PubMed  Google Scholar 

  117. Glassman SD, Dimar JR, Puno RM, et al. A prospective analysis of intraoperative electromyographic monitoring of pedicle screw placement with computed tomographic scan confirmation. Spine. 1995;20:1375–9.

    CAS  PubMed  Google Scholar 

  118. Bala E, Sessler DI, Nair DR, et al. Motor and somatosensory evoked potentials are well maintained in patients given dexmedetomidine during spine surgery. Anesthesiology. 2008;109:417–25.

    PubMed  Google Scholar 

  119. Ngwenyama NE, Anderson J, Hoernschemeyer DG, et al. Effects of dexmedetomidine on propofol and remifentanil infusion rates during total intravenous anesthesia for spine surgery in adolescents. Paediatr Anaesth. 2008;18:1190–5.

    PubMed  Google Scholar 

  120. Pastorelli F, Di Silvestre M, Plasmati R, et al. The prevention of neural complications in the surgical treatment of scoliosis: the role of the neurophysiological intraoperative monitoring. Eur Spine J. 2011;20(Suppl 1):S105–14. https://doi.org/10.1007/s00586-011-1756-z.

    Article  PubMed  Google Scholar 

  121. MacDonald DB, Al Zayed Z, Khoudeir I, et al. Monitoring scoliosis surgery with combined multiple pulse transcranial electric motor and cortical somatosensory-evoked potentials from the lower and upper extremities. Spine. 2002;28:194–203.

    Google Scholar 

  122. Schwartz DM, Auerbach JD, Dormans JP, Flynn J, Drummond DS, Bowe JA, Laufer S, Shah SA, Bowen JR, Pizzutillo PD, Jones KJ, Drummond DS. Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J Bone Joint Surg. 2007;89A:2440–9.

    Google Scholar 

  123. Almenrader N, Patel D. Spinal fusion surgery in children with non-idiopathic scoliosis: is there a need for routine postoperative ventilation? Br J Anaesth. 2006;97:851–7. PubMed: 17035337.

    CAS  PubMed  Google Scholar 

  124. Fletcher ND, Glotzbecker MP, Marks M, Newton PO, Harms Study Group. Development of consensus-based best practice guidelines for postoperative care following posterior spinal fusion for adolescent idiopathic scoliosis. Spine. 2017;42:E547–54.

    PubMed  Google Scholar 

  125. Muhly WT, Sankar WN, Ryan K, Norton A, Maxwell LG, DiMaggio T, et al. Rapid recovery pathway after spinal fusion for idiopathic scoliosis. Pediatrics. 2016;137(4):e20151568.

    PubMed  Google Scholar 

  126. Kim E, Lee B, Cucchiaro G. Perioperative surgical home: evaluation of a new protocol focused on a multidisciplinary approach to manage children undergoing posterior spinal fusion operation. Anesth Analg. 2017;125:812–9.

    PubMed  Google Scholar 

  127. Seki H, Ideno S, Ishihara T, Watanabe K, Matsumoto M, Morisaki H. Postoperative pain management in patients undergoing posterior spinal fusion for adolescent idiopathic scoliosis: a narrative review. Scoliosis Spinal Disord. 2018;13:17. https://doi.org/10.1186/s13013-018-0165-z.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Menger RP, Kalakoti P, Pugely AJ, Nanda A, Sin A. Adolescent idiopathic scoliosis: risk factors for complications and the effect of hospital volume on outcomes. Neurosurg Focus. 2017;43(4):E3.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tandon, M.S., Dhingra, A., Varma, V. (2020). Management of Patient with Scoliosis. In: Prabhakar, H., Rajan, S., Kapoor, I., Mahajan, C. (eds) Problem Based Learning Discussions in Neuroanesthesia and Neurocritical Care. Springer, Singapore. https://doi.org/10.1007/978-981-15-0458-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0458-7_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0457-0

  • Online ISBN: 978-981-15-0458-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics