Skip to main content

Magneto Rheological Fluid Based Smart Automobile Brake and Clutch Systems

  • Chapter
  • First Online:
Automotive Tribology

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

The chapter deals smart fluid i.e. Magneto Rheological fluid which is gaining interest of researcher as the range of application is vast. This book chapter starts with introduction of MR fluid, constituents of MR fluid and detailed study of each constituent. Also, discussing about the present necessity of MR fluid technology we discuss the operational modes of MR fluid. MR devices function basically on three operational modes of MR fluid i.e. flow mode, shear mode and squeeze mode. Every mode possess its own characteristics in high performance application system. Further Mathematical modelling of various rheological parameters and MR fluid is carried out, there after the detailed synthesis process and characterization of MR fluid is discussed. At last overview of MR fluid application is discussed and in detailed progress in MR brakes and clutch system is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ashtiani M, Hashemabadi SH, Ghaffari A (2015) A review on the magnetorheological fluid preparation and stabilization. J Magn Magn Mater 374:711–715

    Article  CAS  Google Scholar 

  • Avraam M, Horodinca M, Romanescu I, Preumont A (2010) Computer controlled rotational MR-brake for wrist rehabilitation device. J Intell Mater Syst Struct 21(15):1543–1557

    Article  Google Scholar 

  • Bednarek S (2003) Non-linearity and hysteresis of Hall effect in magnetorheological suspensions with conducting carrier. J Magn Magn Mater 264(2–3):251–257

    Article  CAS  Google Scholar 

  • Bica D et al (2007) Sterically stabilized water based magnetic fluids: synthesis, structure and properties. J Magn Magn Mater 311(1):17–21

    Google Scholar 

  • Bica I, Liu YD, Choi HJ (2013) Physical characteristics of magnetorheological suspensions and their applications. J Ind Eng Chem 19(2):394–406

    Article  CAS  Google Scholar 

  • Bin Cheng H, Wang JM, Zhang QJ, Wereley NM (2009) Preparation of composite magnetic particles and aqueous magnetorheological fluids. Smart Mater Struct 18(8)

    Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4)

    Google Scholar 

  • Chin BD, Park JH, Kwon MH, Park OO (2001) Rheological properties and dispersion stability of magnetorheological (MR) suspensions. Rheol Acta 40(3):211–219

    Article  CAS  Google Scholar 

  • Chiriac H, Stoian G, Lostun M (2009) Magnetorheological fluids based on amorphous magnetic microparticles. J Phys Conf Ser 149:012045

    Article  CAS  Google Scholar 

  • Cho MS, Lim ST, Jang IB, Choi HJ, Jhon MS (2004) Encapsulation of spherical iron-particle with PMMA and its magnetorheological particles. IEEE Trans Magn 40(4 II):3036–3038

    Google Scholar 

  • Fang FF, Choi HJ, Jhon MS (2009) Magnetorheology of soft magnetic carbonyl iron suspension with single-walled carbon nanotube additive and its yield stress scaling function. Colloids Surf A Physicochem Eng Asp 351(1–3):46–51

    Article  CAS  Google Scholar 

  • Gabriel C, Laun HM (2009) Combined slit and plate-plate magnetorheometry of a magnetorheological fluid (MRF) and parameterization using the Casson model. Rheol Acta 48(7):755–768

    Article  CAS  Google Scholar 

  • Ge L, Gong X, Fan Y, Xuan S (2013) Preparation and mechanical properties of the magnetorheological elastomer based on natural rubber/rosin glycerin hybrid matrix. Smart Mater Struct 22(11)

    Google Scholar 

  • Gong Q, Wu J, Gong X, Fan Y, Xia H (2013) Smart polyurethane foam with magnetic field controlled modulus and anisotropic compression property. RSC Adv 3(10):3241–3248

    Article  CAS  Google Scholar 

  • Guo C, Zhou L, Lv J (2013) Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym Polym Compos 21(7):449–456

    CAS  Google Scholar 

  • Güth D, Cording D, Maas J (2011) MRF based clutch with integrated electrical drive. In: International conference on advanced intelligent mechatronics, AIM, pp 493–498

    Google Scholar 

  • Hajalilou A, Mazlan SA, Shila ST (2016) Magnetic carbonyl iron suspension with Ni-Zn ferrite additive and its magnetorheological properties. Mater Lett 181(1–3):196–199

    Article  CAS  Google Scholar 

  • Hardy EJR (2014) The magnetic fluid clutch. J Inst Electr Eng 1952(1):33–34

    Google Scholar 

  • Iglesias GR, López-López MT, Durán JDG, González-Caballero F, Delgado AV (2012) Dynamic characterization of extremely bidisperse magnetorheological fluids. J Colloid Interface Sci 377(1):153–159

    Article  CAS  Google Scholar 

  • Imaduddin F, Mazlan SA, Zamzuri H (2013) A design and modelling review of rotary magnetorheological damper. Mater Des 51(April):575–591

    Article  Google Scholar 

  • Japka JE (1988) Microstructure and properties of carbonyl iron powder. JOM 40(8):18–21

    Article  CAS  Google Scholar 

  • Jinaga R, Thimmaiah J, Kolekar S, Choi S-B (2019) Design, fabrication and testing of a magnetorheologic fluid braking system for machine tool application. SN Appl Sci 1(4):1–12

    Article  Google Scholar 

  • Jolly MR, Bender JW, Carlson JD (1999) Properties and applications of commercial magnetorheological fluids. J Intell Mater Syst Struct 10(1):5–13

    Article  Google Scholar 

  • Jun JB, Uhm SY, Ryu JH, Do Suh K (2005) Synthesis and characterization of monodisperse magnetic composite particles for magnetorheological fluid materials. Colloids Surf A Physicochem Eng Asp 260(1–3):157–164

    Google Scholar 

  • Kamble VG, Kolekar S (2015) Analysis of rheological properties of MR fluid based on variation in concentration of iron particles. Am J Nanotechnol 5(2):12–16

    Google Scholar 

  • Kamble VG, Kolekar S, Madivalar C (2015) Preparation of magnetorheological fluids using different carriers and detailed study on their properties. Am J Nanotechnol 6(1):7–15

    Google Scholar 

  • Kciuk M, Turczyn R (2006) Properties and application of magnetorheological fluids. J Achiev Mater Manuf Eng 18(1):127–130

    Google Scholar 

  • Kciuk M, Turczyn R (2009) Magnetorheological characterisation of carbonyl iron based suspension. J Achiev Mater Manuf Eng 33(2):135–141

    Google Scholar 

  • Kim JE, Choi HJ (2011) Magnetic carbonyl iron particle dispersed in viscoelastic fluid and its magnetorheological property. IEEE Trans Magn 47(10):3173–3176

    Article  CAS  Google Scholar 

  • Kim MS, Liu YD, Park BJ, You CY, Choi HJ (2012) Carbonyl iron particles dispersed in a polymer solution and their rheological characteristics under applied magnetic field. J Ind Eng Chem 18(2):664–667

    Article  CAS  Google Scholar 

  • Kolekar S (2014a) Vibration analysis of simply supported magneto rheological fluid sandwich beam. Appl Mech Mater 612:23–28

    Article  Google Scholar 

  • Kolekar S (2014b) Preparation of magnetorheological fluid and study on its rheological properties. Int J Nanosci 13(02):1450009

    Article  CAS  Google Scholar 

  • Kolekar S, Kurahatti RV, Kamble PPKV, Reddy N (2014) Preparation of a silicon oil based magneto rheological fluid and an experimental study of its rheological properties using a plate and cone type rheometer. J ISSS 3(2):23–26

    Google Scholar 

  • Kumbhar BK, Patil SR, Sawant SM (2015) Synthesis and characterization of magneto-rheological (MR) fluids for MR brake application. Eng Sci Technol Int J 18(3):432–438

    Article  Google Scholar 

  • Kuzhir P, Bossis G, Bashtovoi V, Volkova O (2003) Flow of magnetorheological fluid through porous media. Eur J Mech B/Fluids 22(4):331–343

    Article  Google Scholar 

  • Kuzhir P, Lopez-lopez M, Bossis G, Kuzhir P, Lopez-lopez M, Bossis G (2010) Magnetorheology of fiber suspensions. II. Theory to cite this version: HAL Id: hal-00439872, vol 53, no 1

    Google Scholar 

  • Li L, Li S, Mu J, Sun H, Wei J, Liu N (2017) Preparation of magnetorheological fluids. Int J Sci 4(9):106–109

    Google Scholar 

  • Liu J, Wang X, Tang X, Hong R, Wang Y, Feng W (2015) Preparation and characterization of carbonyl iron/strontium hexaferrite magnetorheological fluids. Particuology 22:134–144

    Article  CAS  Google Scholar 

  • López-López MT, Zugaldia A, Gómez-Ramirez A, González-Caballero F, Durán JDG (2008) Effect of particle aggregation on the magnetic and magnetorheological properties of magnetic suspensions. J Rheol (N Y N Y) 52(4):901

    Google Scholar 

  • López-López MT, Kuzhir P, Bossis G (2009) Magnetorheology of fiber suspensions. I. Experimental. J Rheol (N Y N Y) 53(1):115–126

    Google Scholar 

  • Mazlan SA, Ekreem NB, Olabi AG (2008) An investigation of the behaviour of magnetorheological fluids in compression mode. J Mater Process Technol 201(1–3):780–785

    Article  CAS  Google Scholar 

  • Noroozi S, Tavangar S, Hashemabadi SH (2013) CFD simulation of wall impingement of tear shape viscoplastic drops utilizing openfoam. Appl Rheol 23(5)

    Google Scholar 

  • Olabi AG, Grunwald A (2007) Design and application of magneto-rheological fluid. Mater Des 28(10):2658–2664

    Article  CAS  Google Scholar 

  • Omidbeygi F, Hashemabadi SH (2013) Exact solution and CFD simulation of magnetorheological fluid purely tangential flow within an eccentric annulus. Int J Mech Sci 75:26–33

    Article  Google Scholar 

  • Park JH, Chin BD, Park OO (2001) Rheological properties and stabilization of magnetorheological fluids in a water-in-oil emulsion. J Colloid Interface Sci 240(1):349–354

    Article  CAS  Google Scholar 

  • Park BJ, Song KH, Choi HJ (2009) Magnetic carbonyl iron nanoparticle based magnetorheological suspension and its characteristics. Mater Lett 63(15):1350–1352

    Article  CAS  Google Scholar 

  • Puente-Córdova JG, Reyes-Melo ME, Palacios-Pineda LM, Martínez-Perales IA, Martínez-Romero O, Elías-Zúñiga A (2018) Fabrication and characterization of isotropic and anisotropic magnetorheological elastomers, based on silicone rubber and carbonyl iron microparticles. Polymers (Basel) 10(12)

    Google Scholar 

  • Qi S, Yu M, Fu J, Zhu M, Xie Y, Li W (2018) An EPDM/MVQ polymer blend based magnetorheological elastomer with good thermostability and mechanical performance. Soft Matter 14(42):8521–8528

    Article  CAS  Google Scholar 

  • Qin F, Brosseau C (2012) A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys 111(6)

    Google Scholar 

  • Rabinow J (1951) Magnetic fluid torque and force transmitting device. US Patent Specification 2575360

    Google Scholar 

  • Rodríguez-arco L, Gómez-ramírez A, Durán JDG, López-lópez MT (1984) New perspectives for magnetic fluid-based devices using novel ionic liquids as carriers

    Google Scholar 

  • Sawalkar VR, More CS, Patil PTB (2015) Preparation and testing of magneto rheological fluid. Int J Tech Res App 3(2):237–240

    Google Scholar 

  • Sherje NP (2016) Preparation and characterization of magnetorheological fluid for damper in automobile suspension. Int J Mech Eng Tech 7(4):75–84

    Google Scholar 

  • Smith AL, Ulicny JC, Kennedy LC (2007) Magnetorheological fluid fan drive for trucks. J Intell Mater Syst Struct 18(12):1131–1136

    Article  Google Scholar 

  • Susan-Resiga D, Bica D, Vékás L (2010) Flow behaviour of extremely bidisperse magnetizable fluids. J Magn Magn Mater 322(20):3166–3172

    Article  CAS  Google Scholar 

  • Tan L, Pu H, Jin M, Chang Z, Wan D, Yin J (2010) Iron nanoparticles encapsulated in poly(AAm-co-MAA) microgels for magnetorheological fluids. Colloids Surf A Physicochem Eng Asp 360(1–3):137–141

    Article  CAS  Google Scholar 

  • Tian Y, Zou Q, Meng Y, Wen S (2003) Tensile behavior of electrorheological fluids under direct current electric fields. J Appl Phys 94(10):6939–6944

    Article  CAS  Google Scholar 

  • Tian TF, Li WH, Alici G, Du H, Deng YM (2011) Microstructure and magnetorheology of graphite-based MR elastomers. Rheol Acta 50(9–10):825–836

    Article  CAS  Google Scholar 

  • Viota JL, De Vicente J, Durán JDG, Delgado AV (2005) Stabilization of magnetorheological suspensions by polyacrylic acid polymers. J Colloid Interface Sci 284(2):527–541

    Article  CAS  Google Scholar 

  • Walikar CA, Kolekar S, Hanumantharaya R, Raju K (2015) A study on vibration characteristics of engine oil based magnetorheological fluid sandwich beam. J Mech Eng Autom 5(3B):84–88

    Google Scholar 

  • Wang X, Gordaninejad F (2006) Study of magnetorheological fluids at high shear rates. Rheol Acta 45(6):899–908

    Article  CAS  Google Scholar 

  • Wang J, Meng G (1948) Magnetorheological uid devices: principles, characteristics and applications in mechanical engineering. Current 215:165–175

    Google Scholar 

  • Wu C, Zhang Q, Song Y, Zheng Q (2017) Microrheology of magnetorheological silicone elastomers during curing process under the presence of magnetic field. AIP Adv 7(9)

    Google Scholar 

  • Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116(5):2658–2667

    CAS  Google Scholar 

  • Yu M, Qi S, Fu J, Yang PA, Zhu M (2015) Preparation and characterization of a novel magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix. Smart Mater Struct 24(4):1–9

    CAS  Google Scholar 

  • Zhang X, Li W, Gong X (2010) Thixotropy of MR shear-thickening fluids. Smart Mater Struct 19(12):2–8

    Article  CAS  Google Scholar 

  • Zhu M, Yu M, Qi S, Fu J (2018) Investigations on response time of magnetorheological elastomer under compression mode. Smart Mater Struct 27(5)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Jinaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jinaga, R., Kolekar, S., Jagadeesha, T. (2019). Magneto Rheological Fluid Based Smart Automobile Brake and Clutch Systems. In: Katiyar, J., Bhattacharya, S., Patel, V., Kumar, V. (eds) Automotive Tribology. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-15-0434-1_13

Download citation

Publish with us

Policies and ethics