Skip to main content

Quantum Symmetry of Classical Spaces

  • Conference paper
  • First Online:
Mathematical Analysis and Applications in Modeling (ICMAAM 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 302))

  • 603 Accesses

Abstract

We give a brief overview of generalized symmetry of classical spaces (manifolds/metric spaces/varieties etc.) in terms of (co)actions of Hopf algebras, both in the algebraic and the analytic set-up.

Partially supported by J C Bose Fellowship from D.S.T. (Govt. of India).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banica, T.: Quantum automorphism groups of small metric spaces. Pac. J. Math. 219(1), 27–51 (2005)

    Article  MathSciNet  Google Scholar 

  2. Banica, T.: Quantum automorphism groups of homogeneous graphs. J. Funct. Anal. 224(2), 243–280 (2005)

    Article  MathSciNet  Google Scholar 

  3. Banica, T., Bichon, J.: Quantum groups acting on 4 points. J. Reine Angew. Math. 626, 75–114 (2009)

    Article  MathSciNet  Google Scholar 

  4. Banica, T., Bichon, J., Collins, B.: Quantum permutation groups: a survey. noncommutative harmonic analysis with applications to probability. Polish Acad. Sci. Inst. Math. 78, 13–34. Banach Center Publications, Warsaw (2007)

    Google Scholar 

  5. Banica, T., Moroianu, S.: On the structure of quantum permutation groups. Proc. Am. Math. Soc. 135(1), 21–29 (2007)

    Article  MathSciNet  Google Scholar 

  6. Bichon, J.: Quantum automorphism groups of finite graphs. Proc. Am. Math. Soc. 131(3), 665–673 (2003)

    Google Scholar 

  7. Bichon, J.: Algebraic quantum permutation groups. Asian-Eur. J. Math. 1(1), 1–13 (2008)

    Article  MathSciNet  Google Scholar 

  8. Connes, A.: Noncommutative Geometry. Academic Press, London, New York (1994)

    MATH  Google Scholar 

  9. Drinfeld, V.G.: Quantum groups. In: Proceedings of the International Congress of Mathematicians, Berkeley (1986)

    Google Scholar 

  10. Drinfeld, V.G.: Quasi-Hopf algebras. Leningr. Math. J. 1, 1419–1457 (1990)

    MathSciNet  Google Scholar 

  11. Etingof, P., Walton, C.: Semisimple hopf actions on commutative domains. Adv. Math. 251, 47–61 (2014)

    Article  MathSciNet  Google Scholar 

  12. Goswami, D.: Quantum group of isometries in classical and non commutative geometry. Commun. Math. Phys. 285(1), 141–160 (2009)

    Article  Google Scholar 

  13. Goswami, D.: Non-existence of genuine (compact) quantum symmetries of compact, connected smooth manifolds. preprint (2018)

    Google Scholar 

  14. Goswami, D., Bhowmick, J.: Quantum Isometry Groups. Springer, Infosys Series (2017)

    MATH  Google Scholar 

  15. Goswami, D., Joardar, S.: Non-existence of faithful isometric action of compact quantum groups on compact, connected Riemannian manifolds. Geom. Funct. Anal. 28(1), 146–178 (2018)

    Article  MathSciNet  Google Scholar 

  16. Huang, H.: Faithful compact quantum group actions on connected compact metrizable spaces. J. Geom. Phys. 70, 232–236 (2013)

    Article  MathSciNet  Google Scholar 

  17. Jimbo, M.: Quantum R-matrix for the generalized Toda system. Commun. Math. Phys. 10, 63–69 (1985)

    Google Scholar 

  18. Jimbo, M.: A q-diff erence analogue of U(g) and the Yang-Baxter equation. Lett. Math. Phys. 10(1), 63–69 (1985)

    Article  MathSciNet  Google Scholar 

  19. Kustermans, J., Vaes, S.: Locally compact quantum groups. Ann. Sci. Ecole Norm. super. 33(6), 837–934 (2000)

    Article  MathSciNet  Google Scholar 

  20. Kustermans, J., Vaes, S.: Locally compact quantum groups in the von Neumann algebraic setting. Math. Scand. 92(1), 68–92 (2003)

    Article  MathSciNet  Google Scholar 

  21. Manin, Y: Some remarks on Koszul algebras and quantum groups. Ann. Inst. Fourier Grenoble 37(4), 191–205 (1987)

    Article  MathSciNet  Google Scholar 

  22. Manin, Y.: Quantum Groups and Non-commutative Geometry. CRM, Montreal (1988)

    MATH  Google Scholar 

  23. Masuda, T., Nakagami, Y., Woronowicz, S.L.: A \(C^{\ast }\)-algebraic framework for quantum groups. Int. J. Math. 14(9), 903–1001 (2003)

    Article  MathSciNet  Google Scholar 

  24. Reshetikhin, N.Y., Takhtajan, L.A., Faddeev, L.D.: Quantization of Lie groups and Lie algebras. Algebra i analiz 1, 178 (1989) (Russian), English translation in Leningrad Math. J. 1

    Google Scholar 

  25. Soibelman, Y.S., Vaksman, L.L.: On some problems in the theory of quantum groups. representation theory and dynamical systems. Adv. Soviet Math. Am. Math. Soc. Providence, RI, 9, 3–55 (1992)

    Google Scholar 

  26. Walton, C., Wang, X.: On quantum groups associated to non-noetherian regular algebras of dimension 2. arXiv:1503.0918

  27. Wang, S.: Quantum symmetry groups of finite spaces. Commun. Math. Phys. 195, 195–211 (1998)

    Article  MathSciNet  Google Scholar 

  28. Woronowicz, S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111(4), 613–665 (1987)

    Google Scholar 

  29. Woronowicz, S.L.: Compact quantum groups. In: Connes, A. (ed.) et al. Symétries Quantiques (Quantum symmetries) (Les Houches), p. 1998. Elsevier, Amsterdam (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashish Goswami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goswami, D. (2020). Quantum Symmetry of Classical Spaces. In: Roy, P., Cao, X., Li, XZ., Das, P., Deo, S. (eds) Mathematical Analysis and Applications in Modeling. ICMAAM 2018. Springer Proceedings in Mathematics & Statistics, vol 302. Springer, Singapore. https://doi.org/10.1007/978-981-15-0422-8_8

Download citation

Publish with us

Policies and ethics