Skip to main content

Experimental and Computational Analysis of Heat Transfer by a Turbulent Air Jet Impingement on a Flat Surface

  • Conference paper
  • First Online:
Advances in Mechanical Engineering

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 2164 Accesses

Abstract

Jet impingement is an active method for the heat transfer enhancement and is in practice in a big way in industries where focussed heating or cooling has to be achieved. In the present experimental work, the parameters like Reynolds number and the non-dimensionalized jet to plate spacing (H/D) have been varied to study the variation in the radial distribution of Nusselt number over the Aluminum flat plate. The air jet diameter of 15 mm is used for the analysis. Reynolds number ranging 4000 to 10,000 and H/D is 2 and 4. The experimental results show close agreements with that of the obtained from the numerical results which are calculated using a commercial CFD code ANSYS FLUENT. After through model testing SST kω turbulence model is employed to arrive at the results and conclusion. It is concluded that increasing Reynolds number and decreasing the H/D increases the Nusselt number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

D :

Jet Diameter (m)

H :

Distance between jet exit and target plate (m)

Nu:

Nusselt Number

Re:

Reynolds Number

\( V_{o} \) :

Mean velocity at the jet inlet (m/s)

\( u_{i} \) :

Fluctuating velocity vector

\( V \) :

Voltage (volts, V)

\( I \) :

Current (ampere, A)

\( A_{\text{plate}} \) :

Area of target plate (m2)

\( L_{\text{c}} \) :

Characteristic length (m)

\( q_{\text{conv}} \) :

Convection heat transfer (W/m2)

h:

Heat transfer coefficient (W/K m2)

\( P_{\text{k}} \) :

Production of turbulent kinetic energy (J)

P :

Pressure (Pa)

\( k \) :

Turbulent kinetic energy (m2/s2)

T:

Static temperature (K)

T :

Fluctuating temperature (K)

U :

Mean velocity (m/s)

Pr:

Prandtl number

\( \mu \) :

Viscosity (kg/m s)

\( \mu_{\text{t}} \) :

Turbulent eddy viscosity (kg/m s)

\( \mu_{\text{e}} \) :

Eddy viscosity (kg/m s)

\( \rho \) :

Fluid density (kg/m3)

\( \omega \) :

Specific dissipation rate (s−1)

\( \updelta_{\text{ij}} \) :

Kronecker delta

\( i,j \) :

Index of coordinate direction

\( a \) :

Atmospheric condition

\( p \) :

Target plate

References

  1. Bovo, M.: Numerical modeling of impinging jets heat transfer. Thesis in Thermo and Fluid Dynamics, Sweden (2011)

    Google Scholar 

  2. Jambunathan, K., Lai, E., Moss, M.A., Button, B.L.: A review of heat transfer data for single circular jet impingement. Int. J. Heat Fluid Flow 13(2), 106–115 (1992). https://doi.org/10.1016/0142-727X(92),90017-4

    Article  Google Scholar 

  3. Behnia, M., Parneix, S., Durbin, P.A.: Prediction of heat transfer in an axisymmetric turbulent jet impinging on a flat plate. Int. J. Heat Mass Transf. 41(12), 1845–1855 (1998). https://doi.org/10.1016/S0017-9310(97),00254-8

    Article  Google Scholar 

  4. Craft, T.J., Iacovides, H., Yoon, J.H.: Progress in the use of non-linear two-equation models in the computation of convective heat-transfer in impinging and separated flows. Turbul. Combust. 63(1–4), 59–80 (2000). https://doi.org/10.1023/A:1009973923473

    Article  MATH  Google Scholar 

  5. Merci, B., Dick, E.: Heat transfer predictions with a cubic k–ε model for axisymmetric turbulent jets impinging onto a flat plate. Int. J. Heat Mass Transf. 46(3), 469–480 (2003). https://doi.org/10.1016/S0017-9310(02),00300-9

    Article  MATH  Google Scholar 

  6. Sahoo, D., Sharif, M.A.R.: Numerical modeling of slot-jet impingement cooling of a constant heat flux surface confined by a parallel wall. Int. J. Therm. Sci. 43(9), 877–887 (2004). https://doi.org/10.1016/j.ijthermalsci.2004.01.004

    Article  Google Scholar 

  7. Wang, S.J., Mujumdar, A.S.: A comparative study of five low Reynolds number k–ε models for impingement heat transfer. Appl. Therm. Eng. 25(1), 31–44 (2005). https://doi.org/10.1016/j.applthermaleng.2004.06.001

    Article  Google Scholar 

  8. Haydar, E., Nevin, C.: Cooling of a heated flat plate by an obliquely impinging slot jet. Int. Comm. Heat Mass Transf. 33, 372–380 (2006). https://doi.org/10.1016/j.icheatmasstransfer.2005.10.009

    Article  Google Scholar 

  9. Sagot, B., Antonini, G., Christgen, A., Buron, F.: Jet impingement heat transfer on a flat plate at a constant wall temperature. Int. J. Therm. Sci. 47(12), 1610–1619 (2008). https://doi.org/10.1016/j.ijthermalsci.2007.10.020

    Article  Google Scholar 

  10. Xing, Y., Spring, S., Weigand, B.: Experimental and numerical investigation of impingement heat transfer on a flat and micro-rib roughened plate with different cross flow schemes. Int. J. Therm. Sci. 50, 1293–1307 (2011). https://doi.org/10.1016/j.ijthermalsci.2010.11.008

    Article  Google Scholar 

  11. Dutta, R., Dewan, A., Srinivasan, B.: Comparison of various integration to wall (ITW) RANS models for predicting turbulent slot jet impingement heat transfer. Int. J. Heat Mass Transf. 65, 750–764 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.056

    Article  Google Scholar 

  12. Achari, A.M., Das, M.K.: Application of various RANS based models towards predicting turbulent slot jet impingement. Int. J. Therm. Sci. 98, 332–351 (2015). https://doi.org/10.1016/j.ijthermalsci.2015.07.018

    Article  Google Scholar 

  13. Zhou, T., Xu, D., Chen, J., Cao, C., Ye, T.: Numerical analysis of turbulent round jet impingement heat transfer at high temperature difference. Appl. Therm. Eng. 100, 55–61 (2016). https://doi.org/10.1016/j.applthermaleng.2016.02.006

    Article  Google Scholar 

  14. Guo, Q., Wen, Z., Dou, R.: Experimental and numerical study on the transient heat-transfer characteristics of circular air-jet impingement on a flat plate. Int. J. Heat Mass Transf. 104, 1177–1188 (2017). https://doi.org/10.1115/1.2911197

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yatish Kumar Baghel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baghel, Y.K., Patel, V.K. (2020). Experimental and Computational Analysis of Heat Transfer by a Turbulent Air Jet Impingement on a Flat Surface. In: Biswal, B., Sarkar, B., Mahanta, P. (eds) Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-0124-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0124-1_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0123-4

  • Online ISBN: 978-981-15-0124-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics