Skip to main content

Improving Crop Health and Productivity: Appraisal of Induced Mutations and Advanced Molecular Genetic Tools

  • Chapter
  • First Online:
Agronomic Crops

Abstract

Food security and crop improvement has become one of the foremost challenges faced by the world today. The production of both food and economic crops is compromised due to different man-made activities that affect the environment adversely, including abiotic and biotic factors. So, the agriculture around the world is under pressure to increase the food production by 70% by 2050 in order to cope with the ever-increasing population’s requirement. Thus, there is a need to improve agronomic traits of the crops by enhancing their nutritional value and also increasing resistance with a better chance of survival. A range of approaches including the utilization of additional land and water resources or agrochemicals are being adopted to achieve improved crop productivity. The idea of conventional breeding, frequently applied for crop improvement, is not so successful since the gene pool of elite trait is quite restricted that requires other state-of-the-art techniques. Thus, this paper (a) overviews induced mutations and major molecular crop improvement techniques; (b) appraises recent works on the strategies for mutation induction and approaches for their detection; (c) critically reviews reports on the major molecular genetic approaches for crop improvement; (d) highlights the role of bioinformatics in crop improvement; and finally (e) concludes the major outcomes of the discussion and highlights the major aspects so far unexplored in the present subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    Article  CAS  PubMed  Google Scholar 

  • Akpınar BA, Lucas SJ, Budak H (2013) Genomics approaches for crop improvement against abiotic stress. Sci World J 6:361921

    Google Scholar 

  • Alvarado V, Scholthof HB (2009) Plant responses against invasive nucleic acids: RNA silencing and its suppression by plant viral pathogens. Semin Cell Dev Biol 20:1032–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azman AS, Mhiri C, Grandbastien MA, Tam SM (2014) Transposable elements and the detection of somaclonal variation in plant tissue culture. Malays Appl Biol 43:1–12

    Google Scholar 

  • Barabaschi D, Tondelli A, Desiderio F, Volante A, Vaccino P, Valè G, Cattivelli L (2016) Next generation breeding. Plant Sci 242:3–13

    Article  CAS  PubMed  Google Scholar 

  • Batista R, Saibo N, Lourenco T, Oliveira MM (2008) Microarray analysis reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion. Proc Natl Acad Sci U S A 105:3640–3645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9(1):39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bergelson J, Roux F (2010) Identifying the genetic basis of complex traits in Arabidopsis thaliana. Nat Rev Genet 11:867–879

    Article  CAS  PubMed  Google Scholar 

  • Bosquet LC, Crossa J, Zitzqitz JV, Serret MD, Araus JL (2012) High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge. J Integr Plant Biol 54:312–320

    Article  Google Scholar 

  • Bouman H, De Klerk GJ (2001) Measurement of the extent of somaclonal variation in begonia plants regenerated under various conditions. Comparison of three assays. Theor Appl Genet 102(1):111–117

    Article  CAS  Google Scholar 

  • Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40(1):143–150

    Article  CAS  PubMed  Google Scholar 

  • Carroll D (2017) Genome editing: past, present, and future. Yale J Biol Med 90:653–659

    Google Scholar 

  • Castillo A, RamĂ­rez MC, MartĂ­n AC, Kilian A, MartĂ­n A, Atienza SG (2013) High-throughput genotyping of wheat-barley amphiploids utilising diversity array technology (DArT). BMC Plant Biol 13:87

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Hao L, Parry MA, Phillips AL, Hu YG (2014) Progress in TILLING as a tool for functional genomics and improvement of crops. J Integr Plant Biol 56:425–443

    Article  PubMed  Google Scholar 

  • Chuang TJ, Yang MY, Lin CC, Hsieh PH, Hung LY (2015) Comparative genomics of grass EST libraries reveals previously uncharacterized splicing events in crop plants. BMC Plant Biol 15:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Datta A (2012) GM crops: dream to bring science to society. Agric Res 1:95–99

    Article  Google Scholar 

  • Datta A (2013) Genetic engineering for improving quality and productivity of crops. Agric Food Secur 2:15

    Article  Google Scholar 

  • Dawkar VV, Chougale AD, Barvkar V, Tanpure RS, Giri AP (2018) Genetically engineered crops: opportunities, constraints, and food security at a glance of human health, environmental impact, and food quality. In: Holban AM, Grumezescu AM (eds) Genetically engineered foods. Academic, Elsevier, pp 311–334

    Chapter  Google Scholar 

  • Deane CR, Fuller MP, Dix PJ (1995) Selection of hydroxyproline-resistant proline-accumulating mutants of cauliflower (brassica oleracea var. botrytis). In: The methodology of plant genetic manipulation: criteria for decision making, pp 329–334

    Google Scholar 

  • Esfeld K, Uauy C, Tadele Z (2013) Application of TILLING for orphan crop improvement. In: Jain S, Dutta Gupta S (eds) Biotechnology of neglected and underutilized crops. Springer, Dordrecht, pp 83–113

    Chapter  Google Scholar 

  • FAO/IAEA Mutant Variety Database 21 February (2016). https://mvd.iaea.org/

  • Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H, Sharma S, Sharma S, Kanzaki H, Matsumura H, Saitoh H, Mitsuoka C, Utsushi H, Uemura A, Kanzaki E, Kosugi S, Yoshida K, Cano L, Kamoun S, Terauchi R (2013) MutMap+: genetic mapping and mutant identification without crossing in rice. PLoS One 8:e68529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueroa DM, Bass HW (2010) A historical and modern perspective on plant cytogenetics. Brief Funct Genomics 9:95–102

    Article  PubMed  Google Scholar 

  • Frerichmann SL, Kirchhoff M, MĂĽller AE, Scheidig AJ, Jung C, Kopisch-Obuch FJ (2013) EcoTILLING in beta vulgaris reveals polymorphisms in the FLC-like gene BvFL1 that are associated with annuality and winter hardiness. BMC Plant Biol 13:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galbraith DW, Edwards J (2010) Applications of microarrays for crop improvement: here, there, and everywhere. Bioscience 60:337–348

    Article  Google Scholar 

  • Gill SS, Anjum NA, Gill R, Jha M, Tuteja N (2015) DNA damage and repair in plants under ultraviolet and ionizing radiations. Sci World J 2015:250158. https://doi.org/10.1155/2015/250158

    Article  CAS  Google Scholar 

  • Gottschalk W, Wolff G (2012) Induced mutations in plant breeding, vol 7. Springer, Berlin

    Google Scholar 

  • Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:5–18

    Article  CAS  PubMed  Google Scholar 

  • Gut IG (2004) DNA analysis by MALDI-TOF mass spectrometry. Hum Mutat 23:437–441

    Article  CAS  PubMed  Google Scholar 

  • Haussman BIK, Parzies HK (2009) Methodologies for generating variability. Part 1: use of genetic resources in plant breeding. In: Ceccarelli S, GuimarĂŁes EP, Weltzein E (eds) Plant breeding and farmer participation. Food and Agriculture Organization of the United Nations (FAO), Rome, pp 107–128

    Google Scholar 

  • Hofmann NE, Raja R, Nelson RL, Korban SS (2004) Mutagenesis of embryogenic cultures of soybean and detecting polymorphisms using RAPD markers. Biol Plant 48(2):173–177

    Article  CAS  Google Scholar 

  • Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Paulo MJ, Boer M, Effgen S, Keizer P, Koornneef M, Van Eeuwijk FA (2011) Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proc Natl Acad Sci U S A 108:4488–4493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibitoye DO, Akin-Idowu PE (2015) Marker-assisted-selection (MAS): a fast track to increase genetic gain in horticultural crop breeding. Afr J Biotechnol 9:8889–8895

    Google Scholar 

  • Ilahy R, Siddiqui MW, Tlili I, Hdider C, Khamassay N, Lenucci MS (2018) Chapter 15 – biofortified vegetables for improved postharvest quality: special reference to high-pigment tomatoes. In: Preharvest modulation of postharvest fruit and vegetable quality. Academic, London, pp 435–454

    Chapter  Google Scholar 

  • Jain SM, Brar DS, Ahloowalia BS (eds) (2013) Somaclonal variation and induced mutations in crop improvement, vol 32. Springer, Dordrecht

    Google Scholar 

  • Jankowicz-Cieslak J, Mba C, Till BJ (2017) Mutagenesis for crop breeding and functional genomics. In: Jankowicz-Cieslak J, Tai T, Kumlehn J, Till B (eds) Biotechnologies for plant mutation breeding. Springer, Cham, pp 3–18

    Chapter  Google Scholar 

  • Joshi RK, Nayak S (2010) Gene pyramiding-a broad spectrum technique for developing durable stress resistance in crops. Biotechnol Mol Biol Rev 5:51–60

    CAS  Google Scholar 

  • Kage U, Kumar A, Dhokane D, Karre S, Kushalappa AC (2015) Functional molecular markers for crop improvement. Crit Rev Biotechnol 36:917–930

    Article  PubMed  CAS  Google Scholar 

  • Kamal AHM, Kim KH, Shin DH, Seo HS, Shin KH et al (2009) Proteomics profile of pre-harvest sprouting wheat by using MALDI-TOF mass spectrometry. Plant Omic J 2:110–119

    CAS  Google Scholar 

  • Katam K, Jones KA, Sakata K (2015) Advances in proteomics and bioinformatics in agriculture research and crop improvement. J Proteomics Bioinform 8:39–48

    Google Scholar 

  • Kavera NHL (2017) Genetic improvement for yield through induced mutagenesis in groundnut (Arachis hypogaea L.). Legum Res Int J 40:32–35

    Google Scholar 

  • Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H et al (2012) Diversity arrays technology: a generic genome profiling technology on open platforms. In: Data production and analysis in population genomics: methods and protocols. Humana Press, New York, pp 67–89

    Chapter  Google Scholar 

  • King R, Bird N, Gonzalez RR, Coghill JA, Patil A, Pak KH, Uauy C, Phillips AL, Hernandez P (2015) Mutation scanning in wheat by exon capture and next-generation sequencing. PLoS One 10(9):e0137549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kong X, Sun X, Xu F, Umemoto T, Chen H, Bao J (2014) Morphological and physicochemical properties of two starch mutants induced from a high amylose Indica rice by gamma irradiation. Starch 66:157–165

    Article  CAS  Google Scholar 

  • Laskar RA, Laskar AA, Raina A, Khan S, Younus H (2018) Induced mutation analysis with biochemical and molecular characterization of high yielding lentil mutant lines. Int J Biol Macromol 109:167–179

    Article  CAS  PubMed  Google Scholar 

  • Lee KS, Choi WY, Ko JC, Kim TS, Gregorio GB (2003) Salinity tolerance of japonica and indica rice (Oryza sativa L.) at the seedling stage. Planta 216(6):1043–1046

    Article  CAS  PubMed  Google Scholar 

  • Lestari EG (2012) Combination of somaclonal variation and mutagenesis for crop improvement. Agro Biogen J 8:38–44

    Google Scholar 

  • Lu BR, Ellstrand N (2014) World food security and the tribe Triticeae (Poaceae): genetic resources of cultivated, wild, and weedy taxa for crop improvement. J Syst Evol 52:661–666

    Article  Google Scholar 

  • Ma J, Xiang H, Donnelly DJ, Meng F-R, Xu H, Durnford D, Li X-Q (2017) Genome editing in potato plants by agrobacterium-mediated transient expression of transcription activator-like effector nucleases. Plant Biotechnol Rep 11:249–258

    Article  Google Scholar 

  • Marcotrigiano M, Hackett G (2000) Nitrosomethylurea induces nuclear and cytoplasmic chlorophyll mutations in Nicotiana glauca Grahm. Ann Bot 86(2):293–298

    Article  CAS  Google Scholar 

  • Martin AJP, Madgwick PJ, Bayon C, Tearall K, o Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H, Labhilili M, Phillips AL (2009) Mutation discovery for crop improvement. J Exp Bot 10:2817–2825

    Google Scholar 

  • Mba C (2013) Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomy 3:200–231

    Article  Google Scholar 

  • Moustafa RAK, Duncan DR, Widholm JM (1989) The effect of gamma radiation and N-ethyl-N-nitrosourea on cultured maize callus growth and plant regeneration. Plant Cell Tissue Org Cult 17(2–3):121–132

    Google Scholar 

  • Muller HJ (1928) The production of mutations by X-rays. Proc Natl Acad Sci U S A 14:714–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negrao S, Almadanim MC, Pires IS, Abreu IA, Maroco J, Courtois B, Gregorio GB, McNally KL, Oliveira MM (2013) New allelic variants found in key rice salt-tolerance genes: an association study. Plant Biotechnol J 11:87–100

    Article  CAS  PubMed  Google Scholar 

  • Nehnevajova E, Herzig R, Federer G, Erismann KH, SchwitzguĂ©bel JP (2007) Chemical mutagenesis-a promising technique to increase metal concentration and extraction in sunflowers. Int J Phytorem 9(2):149–165

    Article  CAS  Google Scholar 

  • Peer R, Rivlin G, Golobovitch S, Lapidot M, Gal-On A, Vainstein A, Tzfira T, Flaishman MA (2015) Targeted mutagenesis using zinc-finger nucleases in perennial fruit trees. Planta 241:941–951

    Article  CAS  PubMed  Google Scholar 

  • Pereira G, LeitĂŁo J (2010) Two powdery mildew resistance mutations induced by ENU in Pisum sativum L. affect the locus er1. Euphytica 171(3):345–354

    Article  CAS  Google Scholar 

  • PĂ©rez-de-Castro AM, Vilanova S, Cañizares J, Pascual L, Blanca JM, DĂ­ez MJ, Prohens J, PicĂł B (2012) Application of genomic tools in plant breeding. Curr Genomics 13:179–195

    Article  PubMed  PubMed Central  Google Scholar 

  • Rey P, Eymery F, Peltier G (1990) Atrazine and diuron resistant plants from photoautotrophic protoplast-derived cultures of Nicotiana plumbaginifolia. Plant Cell Rep 9(5):241–244

    Article  CAS  PubMed  Google Scholar 

  • Rybinski W (2003) Mutagenesis as a tool for improvement of traits in grasspea (Lathyrus sativus L.). Lathyrus Lathyrism. Newsletter 3:60–479

    Google Scholar 

  • Saikat KB, Acharya SN, Thomas JE (2008) Genetic improvement of fenugreek (Trigonella foenum-graecum L.) through EMS induced mutation breeding for higher seed yield under western Canada prairie conditions. Euphytica 160(2):249–258

    Article  Google Scholar 

  • Salse J (2012) In silico archeogenomics unveils modern plant genome organization, regulation and evolution. Curr Opin Plant Biol 15:122–130

    Article  CAS  PubMed  Google Scholar 

  • Saurabh S, Vidyarthi AS, Prasad D (2014) RNA interference: concept to reality in crop improvement. Planta 239:543–564

    Article  CAS  PubMed  Google Scholar 

  • Serrat X, Esteban R, Guibourt N, Moysset L, Nogues S, Lalanne E (2014) EMS mutagenesis in mature seed-derived rice calli as a new method for rapidly obtaining TILLING mutant populations. Plant Methods 10:5. https://doi.org/10.1186/1746-4811-10-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma SK, Sharma B (1986) Mutagen sensitivity and mutability in lentil. Theor Appl Genet 71(6):820–825

    Article  CAS  PubMed  Google Scholar 

  • Shu QY (2012) Mutagenesis. In: Shu Q, Brian Y, Forster P, Nakagawa H (eds) Plant mutation breeding and biotechnology. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, pp 107–128

    Chapter  Google Scholar 

  • Sikora E, Arendt T, Bennett M, Narita M (2011a) Impact of cellular senescence signature on ageing research. Ageing Res Rev 10:146–152

    Article  CAS  PubMed  Google Scholar 

  • Sikora P, Chawade A, Larsson M, Olsson J, Olsson O (2011b) Mutagenesis as a tool in plant genetics, functional genomics, and breeding. Int J Plant Genomics 2011:314829. https://doi.org/10.1155/2011/314829

    Article  CAS  PubMed  Google Scholar 

  • Simko I (2016) High-resolution DNA melting analysis in plant research. Trends Plant Sci 21:528–537

    Article  CAS  PubMed  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23(1):75–81

    Article  CAS  PubMed  Google Scholar 

  • Songstad DD, Petolino JF, Voytas DF, Reichert NA (2017) Genome editing of plants. CRC Crit Rev Plant Sci 36:1–23

    Article  Google Scholar 

  • Suprasanna P, Mirajkar SJ, Bhagwat SG (2015) Induced mutations and crop improvement. In: Bahadur B (ed) Plant biology and biotechnology. Springer, New Delhi, pp 593–617

    Chapter  Google Scholar 

  • Suzuki T, Eiguchi M, Kumamaru T, Satoh H, Matsusaka H, Moriguchi K, Nagato Y, Kurata N (2008) MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice. Mol Gen Genomics 279:213–223

    Article  CAS  Google Scholar 

  • Suzuki T, Murai MN, Hayashi T, Nasuda S, Yoshimura Y, Komatsuda T (2015) Resistance to wheat yellow mosaic virus in Madsen wheat is controlled by two major complementary QTLs. Theor Appl Genet 128:1569–1578

    Article  CAS  PubMed  Google Scholar 

  • Svetleva D (2004) EMS and NEU mutagenic efficiency and effectiveness in induction of morphological mutations in Phaseolus vulgaris L. II. Annual report

    Google Scholar 

  • Takagi H, Uemura A, Yaegashi H, Tamiru M, Abe A, Mitsuoka C et al (2013) MutMap-gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol 200:276–283

    Article  CAS  PubMed  Google Scholar 

  • Talamè V, Bovina R, Sanguineti MC, Tuberosa R, Lundqvist U, Salvi S (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol J 6(5):477–485

    Article  PubMed  CAS  Google Scholar 

  • Tomlekova NB, White PJ, Thompson JA, Penchev EA, Nielen S (2017) Mutation increasing β-carotene concentrations does not adversely affect concentrations of essential mineral elements in pepper fruit. PLoS One 12:e0172180. https://doi.org/10.1371/journal.pone.0172180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uauy C, Paraiso F, Colasuonno P, Tran RK, Tsai H, Berardi S, Comai L, Dubcovsky J (2009) A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol 9:115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang M, Abbott D, Waterhouse PM (2000) A single copy of a virus derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol Plant Pathol 1:401–410

    Article  Google Scholar 

  • Weeks DP (2017) Gene editing in polyploid crops: wheat, camelina, canola, potato, cotton, peanut, sugar cane, and citrus. Prog Mol Biol Transl Sci 149:65–80

    Article  CAS  PubMed  Google Scholar 

  • Westphal Y, Schols HA, Voragen AG, Gruppen H (2010) MALDI-TOF MS and CE-LIF fingerprinting of plant cell wall polysaccharide digests as a screening tool for arabidopsis cell wall mutants. J Agric Food Chem 58:4644–4652

    Article  CAS  PubMed  Google Scholar 

  • Wilcox JR, Premachandra GS, Young KA, Raboy V (2000) Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci 40(6):1601–1605

    Article  Google Scholar 

  • Xia Y, Li R, Ning Z, Bai G, Siddique KHM, Yan GX, Baum M, Varshney RK, Guo P (2013) Single nucleotide polymorphisms in HSP17.8 and their association with agronomic traits in barley. PLoS One 8:e56816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G, Burke J (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8(1):103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu C, Sanahuja G, Yuan D, FarrĂ© G, ArjĂł G, Berman J (2013) Biofortification of plants with altered antioxidant content and composition: genetic engineering strategies. Plant Biotechnol J 11:129–141

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

EFAA would like to extend his sincere appreciation to the Deanship of Scientific Research at King Saud University for funding the work through research group no. (RG 1435-014). Financial support received from the Portuguese Foundation for Science and Technology (FCT) is gratefully acknowledged by NAA (SFRH/BPD/64690/2009; SFRH/BPD/84671/2012).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghori, NuH., Ghori, T., Imadi, S.R., Gul, A. (2020). Improving Crop Health and Productivity: Appraisal of Induced Mutations and Advanced Molecular Genetic Tools. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-0025-1_20

Download citation

Publish with us

Policies and ethics