Skip to main content

Nanoscale First-Principles Electronic Structure Simulations of Materials Relevant to Organic Electronics

  • Chapter
  • First Online:
Theoretical Chemistry for Advanced Nanomaterials

Abstract

Organic molecular materials have attracted considerable attention as a candidate for next-generation flexible electronics in the near future. However, there still remain open questions on fundamental electronic properties such as mechanisms of the carrier transport and barriers for carrier injection at organic-inorganic heterojunctions. In this review, we illustrate the progresses in first-principles electronic structure calculations of the materials for investigation of the atomic- or molecular-scale electronic properties of organic semiconductor materials, which are in general difficult to observe even with present-day experimental techniques. The theoretical studies not only help elucidate the mechanism of the experimental measurement but also may allow us to gain insights into the essences of the materials properties in terms of the electronic structure. Specifically, in this article, we focus on the first-principles theoretical treatment of the geometric configurations of organic semiconductors and their electronic structure at the level beyond the approximation to the density functional theory (DFT) such as the local density (LDA) and generalized gradient approximations (GGA), i.e., the van der Waals-inclusive methods for describing the weak intermolecular interaction in organic solids and the many-body perturbation theory within the GW approximation for treatment of the charged excitation (quasiparticle) and thus the fundamental gap and the band dispersion of the crystals. Here, we illustrate the recent studies on (i) the effect of the molecular configuration on the quasiparticle energy in organic semiconductors, (ii) the energy level alignment at organic-metal interfaces, and (iii) prediction of the charge injection levels at a surface of organic thin film, i.e., the ionization energy and the electron affinity. Further progresses in theoretical methodologies, being enhanced by rapid progress in computational resource and algorithm, might lead to in silico material simulation or design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.R. Sheats, Manufacturing and commercialization issues in organic electronics. J. Mater. Res. 19(7), 1974 (2004). https://doi.org/10.1557/JMR.2004.0275

  2. M.E. Gershenson, V. Podzorov, A.F. Morpurgo, Colloquium: electronic transport in single-crystal organic transistors. Rev. Mod. Phys. 78, 973 (2006). https://doi.org/10.1103/RevModPhys.78.973

    Article  CAS  Google Scholar 

  3. J. Kleis, B.I. Lundqvist, D.C. Langreth, E. Schröder, Towards a working density-functional theory for polymers: first-principles determination of the polyethylene crystal structure. Phys. Rev. B 76, 100201 (2007)

    Article  CAS  Google Scholar 

  4. D. Lu, Y. Li, D. Rocca, G. Galli, Ab initio calculation of van der waals bonded molecular crystals. Phys. Rev. Lett. 102, 206411 (2009)

    Article  PubMed  CAS  Google Scholar 

  5. A. Tkatchenko, M. Scheffler, Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009)

    Article  PubMed  CAS  Google Scholar 

  6. A. Otero-de-la-Roza, E.R. Johnson, Van der waals interactions in solids using the exchange-hole dipole moment model. J. Chem. Phys. 136, 174109 (2012)

    Article  CAS  PubMed  Google Scholar 

  7. A. Otero-de-la-Roza, E.R. Johnson, Application of the exchange-hole dipole moment (XDM) model to molecular solids. J. Chem. Phys. 137, 054103 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. A. Tkatchenko, J.R.A. DiStasio, R. Car, M. Scheffler, Accurate and efficient method for many-body van der waals interactions. Phys. Rev. Lett. 108, 236402 (2012)

    Article  PubMed  CAS  Google Scholar 

  9. J. Klimeš, A. Michaelides, Perspective: advances and challenges in treating van der waals dispersion forces in density functional theory. J. Chem. Phys. 137, 120901 (2012)

    Article  PubMed  CAS  Google Scholar 

  10. I. Hamada, van der waals density functional made accurate. Phys. Rev. B 89, 121103(R) (2014)

    Google Scholar 

  11. A.M. Reilly, A. Tkatchenko, Role of dispersion interactions in the polymorphism and entropic stabilization of the aspirin crystal. Phys. Rev. Lett. 113, 055701 (2014)

    Article  PubMed  CAS  Google Scholar 

  12. L. Hedin, New method for calculating the one-particle green’s function with application to the electron-gas problem. Phys. Rev. 139, A796 (1965). https://doi.org/10.1103/PhysRev.139.A796

    Article  Google Scholar 

  13. S. Yanagisawa, I. Hamada, Determination of geometric and electronic structures of organic crystals from first principles: role of the molecular configuration on the electronic structure. J. Appl. Phys. 121(4), 045501 (2017). https://doi.org/10.1063/1.4974844

  14. N. Marzari, A.A. Mostofi, J.R. Yates, I. Souza, D. Vanderbilt, Maximally localized wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419 (2012)

    Article  CAS  Google Scholar 

  15. A.A. Mostofi, J.R. Yates, Y.S. Lee, I. Souza, D. Vanderbilt, N. Marzari, wannier90: a tool for obtaining maximally-localised wannier functions. Comput. Phys. Commun. 178(9), 685 (2008)

    Google Scholar 

  16. C. Motta, S. Sanvito, Charge transport properties of durene crystals from first-principles. J. Chem. Theor. Comput. 10, 4624 (2014)

    Article  CAS  Google Scholar 

  17. H. Ishii, K. Sugiyama, E. Ito, K. Seki, Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 11, 605 (1999)

    Article  CAS  Google Scholar 

  18. M.S. Hybertsen, S.G. Louie, Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390 (1986). https://doi.org/10.1103/PhysRevB.34.5390

    Article  CAS  Google Scholar 

  19. S.A. Wella, H. Sawada, N. Kawaguchi, F. Muttaqien, K. Inagaki, I. Hamada, Y. Morikawa, Y. Hamamoto, Hybrid image potential states in molecular overlayers on graphene. Phys. Rev. Mater. 1(6), 061001 (2017). https://doi.org/10.1103/PhysRevMaterials.1.061001

  20. T. Yamada, M. Isobe, M. Shibuta, H.S. Kato, T. Munakata, Spectroscopic investigation of unoccupied states in nano- and macroscopic scale: naphthalene overlayers on highly oriented pyrolytic graphite studied by combination of scanning tunneling microscopy and two-photon photoemission. J. Phys. Chem. C 118(2), 1035 (2014). https://doi.org/10.1021/jp4097875

  21. Y. Kang, S.H. Jeon, Y. Cho, S. Han, Ab initio calculation of ionization potential and electron affinity in solid-state organic semiconductors. Phys. Rev. B 93, 035131 (2016). https://doi.org/10.1103/PhysRevB.93.035131

    Article  CAS  Google Scholar 

  22. K. Yamada, S. Yanagisawa, T. Koganezawa, K. Mase, N. Sato, H. Yoshida, Impact of the molecular quadrupole moment on ionization energy and electron affinity of organic thin films: experimental determination of electrostatic potential and electronic polarization energies. Phys. Rev. B 97, 245206 (2018). https://doi.org/10.1103/PhysRevB.97.245206

    Article  CAS  Google Scholar 

  23. J. Li, G. D’Avino, I. Duchemin, D. Beljonne, X. Blase, Combining the many-body GW formalism with classical polarizable models: insights on the electronic structure of molecular solids. J. Phys. Chem. Lett. 7(14), 2814 (2016). https://doi.org/10.1021/acs.jpclett.6b01302

  24. J.L. Brédas, J.P. Calbert, D.A. da Silva Filho, J. Cornil, Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc. Natl. Acad. Sci. U. S. A. 99, 5804 (2002)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, J.L. Brédas, Charge transport in organic semiconductors. Chem. Rev. 107, 926 (2007)

    Article  CAS  PubMed  Google Scholar 

  26. A.M. Reilly, R.I. Cooper, C.S. Adjiman, S. Bhattacharya, A.D. Boese, J.G. Brandenburg, P.J. Bygrave, R. Bylsma, J.E. Campbell, R. Car, D.H. Case, R. Chadha, J.C. Cole, K. Cosburn, H.M. Cuppen, F. Curtis, G.M. Day, R.A. DiStasio Jr, A. Dzyabchenko, B.P. van Eijck, D.M. Elking, J.A. van den Ende, J.C. Facelli, M.B. Ferraro, L. Fusti-Molnar, C.A. Gatsiou, T.S. Gee, R. de Gelder, L.M. Ghiringhelli, H. Goto, S. Grimme, R. Guo, D.W.M. Hofmann, J. Hoja, R.K. Hylton, L. Iuzzolino, W. Jankiewicz, D.T. de Jong, J. Kendrick, N.J.J. de Klerk, H.Y. Ko, L.N. Kuleshova, X. Li, S. Lohani, F.J.J. Leusen, A.M. Lund, J. Lv, Y. Ma, N. Marom, A.E. Masunov, P. McCabe, D.P. McMahon, H. Meekes, M.P. Metz, A.J. Misquitta, S. Mohamed, B. Monserrat, R.J. Needs, M.A. Neumann, J. Nyman, S. Obata, H. Oberhofer, A.R. Oganov, A.M. Orendt, G.I. Pagola, C.C. Pantelides, C.J. Pickard, R. Podeszwa, L.S. Price, S.L. Price, A. Pulido, M.G. Read, K. Reuter, E. Schneider, C. Schober, G.P. Shields, P. Singh, I.J. Sugden, K. Szalewicz, C.R. Taylor, A. Tkatchenko, M.E. Tuckerman, F. Vacarro, M. Vasileiadis, A. Vazquez-Mayagoitia, L. Vogt, Y. Wang, R.E. Watson, G.A. de Wijs, J. Yang, Q. Zhu, C.R. Groom, Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallogr. B 72(4), 439 (2016). https://doi.org/10.1107/S2052520616007447

  27. J. Hermann, R.A. DiStasio, A. Tkatchenko, First-principles models for van der waals interactions in molecules and materials: concepts, theory, and applications. Chem. Rev. 117(6), 4714 (2017). https://doi.org/10.1021/acs.chemrev.6b00446. PMID: 28272886

  28. J. Klimeš, M. Kaltak, E. Maggio, G. Kresse, Singles correlation energy contributions in solids. J. Chem. Phys. 143(10), 102816 (2015)

    Google Scholar 

  29. J. Klimeš, Lattice energies of molecular solids from the random phase approximation with singles corrections. J. Chem. Phys. 145(9), 094506 (2016). https://doi.org/10.1063/1.4962188. http://scitation.aip.org/content/aip/journal/jcp/145/9/10.1063/1.4962188

  30. K. Hongo, M.A. Watson, R.S. Sánchez-Carrera, T. Iitaka, A. Aspuru-Guzik, Failure of conventional density functionals for the prediction of molecular crystal polymorphism: a quantum monte carlo study. J. Phys. Chem. Lett. 1(12), 1789 (2010)

    Google Scholar 

  31. A. Zen, J.G. Brandenburg, J. Klimeš, A. Tkatchenko, D. Alfè, A. Michaelides, Fast and accurate quantum monte carlo for molecular crystals. Proc. Natl. Acad. Sci. U. S. A. 115(8), 1724 (2018). https://doi.org/10.1073/pnas.1715434115. http://www.pnas.org/content/115/8/1724

  32. J. Yang, W. Hu, D. Usvyat, D. Matthews, M. Schütz, G.K.L. Chan, Ab initio determination of the crystalline benzene lattice energy to sub-kilojoule/mole accuracy. Science 345(6197), 640 (2014)

    Google Scholar 

  33. M. Del Ben, J. Hutter, J. VandeVondele, Forces and stress in second order møller-plesset perturbation theory for condensed phase systems within the resolution-of-identity gaussian and plane waves approach. J. Chem. Phys. 143(10), 102803 (2015)

    Google Scholar 

  34. M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Van der waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004)

    Article  CAS  PubMed  Google Scholar 

  35. K. Berland, P. Hyldgaard, Exchange functional that tests the robustness of the plasmon description of the van der waals density functional. Phys. Rev. B 89, 035412 (2014)

    Article  CAS  Google Scholar 

  36. J. Kilmeš, D.R. Bowler, A. Michaelides, Chemical accuracy for the van der waals density functional. J. Phys. Condens. Matter 22, 022201 (2010)

    Article  CAS  Google Scholar 

  37. K. Lee, É.D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Higher-accuracy van der waals density functional. Phys. Rev. B 82, 081101(R) (2010)

    Google Scholar 

  38. V.R. Cooper, Van der waals density functional: an appropriate exchange functional. Phys. Rev. B 81, 161104(R) (2010)

    Google Scholar 

  39. J. Kilmeš, D.R. Bowler, A. Michaelides, Van derwaals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011)

    Article  CAS  Google Scholar 

  40. G. Román-Pérez, J.M. Soler, Efficient implementation of a van der waals density functional: application to double-wall carbon nanotubes. Phys. Rev. Lett. 103, 096102 (2009). https://doi.org/10.1103/PhysRevLett.103.096102

    Article  PubMed  CAS  Google Scholar 

  41. S. Yanagisawa, K. Yamauchi, T. Inaoka, T. Oguchi, I. Hamada, Origin of the band dispersion in a metal phthalocyanine crystal. Phys. Rev. B 90, 245141 (2014)

    Article  CAS  Google Scholar 

  42. The crystal structure for the naphthalene at 5 K was taken from NAPHTA31 in Cambridge Crystallographic database. The structure of anthracene was taken from Ref. [68]. The crystal structure of the tetracene crystal was generated using the atomic coordinates given in Ref. [46]. The pentacene crystalline phase obtained by vapor deposition [48] was taken. The diffraction data measured at 123 K [57] was used for hexacene crystal

    Google Scholar 

  43. H.C. Alt, J. Kalus, X-ray powder diffraction investigation of naphthalene up to 0.5 gpa. Acta Crystallogr. B Struct. Crystallogr. Cryst. Chem. 38, 2595 (1982)

    Google Scholar 

  44. R. Mason, The crystallography of anthracene at 95 K and 290 K. Acta Cryst. 17, 547 (1964)

    Article  CAS  Google Scholar 

  45. J.M. Robertson, V.C. Sinclair, J. Trotter, The crystal and molecular structure of tetracene. Acta Cryst. 14, 697 (1961)

    Article  CAS  Google Scholar 

  46. The temperature at which the X-ray diffraction measurement is performed is not clear in Ref. [46]. The cell lengths and the volume of the tetracene crystal (\(P\overline {1}\) symmetry) measured at 295 K [54] were slightly smaller. Therefore we presume that the temperature of the measurement in Ref. [46] is 295 K or higher

    Google Scholar 

  47. T. Siegrist, C. Kloc, J.H. Schön, B. Batlogg, R.C. Haddon, S. Berg, G.A. Thomas, Enhanced physical properties in a pentacene polymorph. Angew. Chem. Int. Ed. Engl. 40, 1732 (2001)

    Article  CAS  PubMed  Google Scholar 

  48. C.C. Mattheus, A.B. Dros, J. Baas, A. Meetsma, J.L. de Boer, T.T.M. Palstra, Polymorphism in pentacene. Acta Crystallogr. C Cryst. Struct. Commun. C57, 939 (2001)

    Article  CAS  Google Scholar 

  49. C.C. Mattheus, A.B. Dros, J. Baas, G.T. Oostergetel, A. Meetsma, J.L. de Boer, T.T.M. Palstra, Identification of polymorphs of pentacene. Synth. Met. 138, 475 (2003)

    Article  CAS  Google Scholar 

  50. D. Holmes, S. Kumaraswamy, A. Matzeger, K.P.C. Vollhardt, On the nature of nonplanarity in the [n]phenylenes. Chem.-Eur. J. 5, 3399 (1999)

    Article  CAS  Google Scholar 

  51. S. Yanagisawa, K. Okuma, T. Inaoka, I. Hamada, Recent progress in predicting structural and electronic properties of organic solids with the van der waals density functional. J. Electron Spectros. Relat. Phenomena 204, 159 (2015). https://doi.org/10.1016/j.elspec.2015.04.007. http://www.sciencedirect.com/science/article/pii/S0368204815000754

  52. T. Rangel, K. Berland, S. Sharifzadeh, F. Brown-Altvater, K. Lee, P. Hyldgaard, L. Kronik, J.B. Neaton, Structural and excited-state properties of oligoacene crystals from first principles. Phys. Rev. B 93(11), 115206 (2016)

    Google Scholar 

  53. R.B. Campbell, J.M. Robertson, J. Trotter, The crystal structure of hexacene, and a revision of the crystallographic data for tetracene. Acta Cryst. 15, 289 (1962)

    Article  CAS  Google Scholar 

  54. H. Yoshida, N. Sato, Grazing-incidence x-ray diffraction study of pentacene thin films with the bulk phase structure. Appl. Phys. Lett. 89(10), 101919 (2006). https://doi.org/10.1063/1.2349307

  55. S. Schiefer, M. Huth, A. Dobrinevski, B. Nickel, Determination of the crystal structure of substrate-induced pentacene polymorphs in fiber structured thin films. J. Am. Chem. Soc. 129(34), 10316 (2007). https://doi.org/10.1021/ja0730516

  56. M. Watanabe, Y.J. Chang, S.W. Liu, T.H. Chao, K. Goto, M.M. Islam, C.H. Yuan, Y.T. Tao, T. Shinmyozu, T.J. Chow, The synthesis, crystal structure and charge-transport properties of hexacene. Nat. Chem. 4, 574 (2012). https://doi.org/10.1038/nchem.1381

    Article  CAS  PubMed  Google Scholar 

  57. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)

    Article  Google Scholar 

  58. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996)

    Article  CAS  Google Scholar 

  59. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)

    Article  CAS  Google Scholar 

  60. A.D. Becke, On the large-gradient behavior of the density functional exchange energy. J. Chem. Phys. 85, 7184 (1986)

    Article  CAS  Google Scholar 

  61. We used C_h and H_h for our vdW-DF calculations

    Google Scholar 

  62. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  63. F. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. U. S. A. 30(9), 244 (1944)

    Google Scholar 

  64. A.M. Reilly, A. Tkatchenko, Understanding the role of vibrations, exact exchange, and many-body van der waals interactions in the cohesive properties of molecular crystals. J. Chem. Phys. 139, 024705 (2013)

    Article  PubMed  CAS  Google Scholar 

  65. D.J. Carter, A.L. Rohl, Benchmarking calculated lattice parameters and energies of molecular crystals using van der waals density functionals. J. Chem. Theory Comput. 10(8), 3423 (2014)

    Google Scholar 

  66. S.C. Capelli, A. Albinati, S.A. Mason, B.T.M. Willis, Molecular motion in crystalline naphthalene: analysis of multi-temperature x-ray and neutron diffraction data. J. Phys. Chem. A 110(41), 11695 (2006). https://doi.org/10.1021/jp062953a

  67. S.L. Chaplot, N. Lehner, G.S. Pawley, The structure of anthracene-d10 at 16 K using neutron diffraction. Acta Crystallogr. B 38(2), 483 (1982). https://doi.org/10.1107/S0567740882003239

  68. M.V. Roux, M. Temprado, J.S. Chickos, Y. Nagano, Critically evaluated thermochemical properties of polycyclic aromatic hydrocarbons. J. Phys. Chem. Ref. Data 37(4), 1855 (2008). https://doi.org/10.1063/1.2955570

  69. A.D. Becke, E.R. Johnson, Exchange-hole dipole moment and the dispersion interaction revisited. J. Chem. Phys. 127, 154108 (2007)

    Article  PubMed  CAS  Google Scholar 

  70. A.D. Becke, E.R. Johnson, A unified density-functional treatment of dynamical, nondynamical, and dispersion correlations. J. Chem. Phys. 127, 124108 (2007)

    Article  PubMed  CAS  Google Scholar 

  71. N. Geacintov, M. Pope, Low-lying valence band states and intrinsic photoconductivity in crystalline anthracene and tetracene. J. Chem. Phys. 50(2), 814 (1969)

    Google Scholar 

  72. C.L. Braun, G.M. Dobbs, Intrinsic photoconductivity in naphthalene single crystals. J. Chem. Phys. 53(7), 2718 (1970)

    Google Scholar 

  73. H. Baessler, H. Killesreiter, Hot carrier injection into molecular crystals and its relevance to the field dependence of photocurrents. Phys. Status Solidi B 53(1), 183 (1972)

    Google Scholar 

  74. H. Baessler, H. Killesreiter, Bandgap-determination from autoionization data in molecular crystals. Mol. Cryst. Liq. Cryst. 24(1–2), 21 (1973)

    Google Scholar 

  75. A.I. Belkind, V.V. Grechov, Energy levels of polyacene crystals. Phys. Status Solidi A 26(1), 377 (1974)

    Google Scholar 

  76. L. Sebastian, G. Weiser, H. Bässler, Charge transfer transitions in solid tetracene and pentacene studied by electroabsorption. Chem. Phys. 61, 125 (1981)

    Article  CAS  Google Scholar 

  77. E.A. Silinsh, V.A. Kolesnikov, I.J. Muzikante, D.R. Balode, On charge carrier photogeneration mechanisms in organic molecular crystals. Phys. Status Solidi B 113(1), 379 (1982)

    Google Scholar 

  78. L. Sebastian, G. Weiser, G. Peter, H. Bässler, Charge-transfer transitions in crystalline anthracene and their role in photoconductivity. Chem. Phys. 75, 103 (1983)

    Article  CAS  Google Scholar 

  79. Y. Isono, E. Morikawa, M. Kotani, Two-color pulsed photoconductivity study of naphthalene single crystal: photoionization of singlet exciton. Chem. Phys. Lett. 125, 344 (1986)

    Article  CAS  Google Scholar 

  80. H. Yoshida, K. Yamada, J. Tsutsumi, N. Sato, Complete description of ionization energy and electron affinity in organic solids: determining contributions from electronic polarization, energy band dispersion, and molecular orientation. Phys. Rev. B 92, 075145 (2015). https://doi.org/10.1103/PhysRevB.92.075145

    Article  CAS  Google Scholar 

  81. M.L.M. Rocco, M. Haeming, D.R. Batchelor, R. Fink, A. Schöll, E. Umbach, Electronic relaxation effects in condensed polyacenes: a high-resolution photoemission study. J. Chem. Phys. 129(7), 074702 (2008). https://doi.org/10.1063/1.2966356

  82. M.M. Rieger, L. Steinbeck, I.D. White, H.N. Rojas, R.W. Godby, The GW space-time method for the self-energy of large systems. Comput. Phys. Commun. 117, 211 (1999)

    Article  CAS  Google Scholar 

  83. L. Steinbeck, A. Rubio, L. Reining, M. Torrent, I.D. White, R.W. Godby, Enhancements to the GW space-time method. Comput. Phys. Commun. 125, 105 (2000)

    Article  CAS  Google Scholar 

  84. C. Freysoldt, P. Eggert, P. Rinke, A. Schindlmayr, R.W. Godby, M. Scheffler, Dielectric anisotropy in the GW space-time method. Comput. Phys. Commun. 176, 1 (2007)

    Article  CAS  Google Scholar 

  85. N. Troullier, J.L. Martins, Efficient pseudopotentials for place-wave calculations. Phys. Rev. B 43, 1993 (1991)

    Article  CAS  Google Scholar 

  86. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Google Scholar 

  87. Y. Morikawa, H. Ishii, K. Seki, Theoretical study of n-alkane adsorption on metal surfaces. Phys. Rev. B 69, 041403(R) (2004)

    Google Scholar 

  88. C. Faber, P. Boulanger, C. Attaccalite, I. Duchemin, X. Blase, Excited states properties of organic molecules: from density functional theory to the GW and bethe–salpeter green’s function formalisms. Phil. Trans. R. Soc. A 372(2011) (2014)

    Google Scholar 

  89. S. Körbel, P. Boulanger, I. Duchemin, X. Blase, M.A.L. Marques, S. Botti, Benchmark many-body GW and bethe-salpeter calculations for small transition metal molecules. J. Chem. Theory Comput. 10(9), 3934 (2014)

    Google Scholar 

  90. C. Rostgaard, K.W. Jacobsen, K.S. Thygesen, Fully self-consistent GW calculations for molecules. Phys. Rev. B 81, 085103 (2010)

    Article  CAS  Google Scholar 

  91. X. Blase, C. Attaccalite, V. Olevano, First-principles GW calculations for fullerenes, porphyrins, phtalocyanine, and other molecules of interest for organic photovoltaic applications. Phys. Rev. B 83, 115103 (2011)

    Article  CAS  Google Scholar 

  92. S. Sharifzadeh, A. Biller, L. Kronik, J.B. Neaton, Quasiparticle and optical spectroscopy of the organic semiconductors pentacene and ptcda from first principles. Phys. Rev. B 85, 125307 (2012)

    Article  CAS  Google Scholar 

  93. F. Caruso, P. Rinke, X. Ren, M. Scheffler, A. Rubio, Unified description of ground and excited states of finite systems: the self-consistent GW approach. Phys. Rev. B 86, 081102 (2012)

    Article  CAS  Google Scholar 

  94. F. Bruneval, M.A.L. Marques, Benchmarking the starting points of the GW approximation for molecules. J. Chem. Theory Comput. 9(1), 324 (2013)

    Google Scholar 

  95. M. Govoni, G. Galli, Large scale GW calculations. J. Chem. Theory Comput. 11(6), 2680 (2015)

    Google Scholar 

  96. W. Luo, S. Ismail-Beigi, M.L. Cohen, S.G. Louie, Quasiparticle band structure of zns and znse. Phys. Rev. B 66, 195215 (2002)

    Article  CAS  Google Scholar 

  97. W. Setyawan, S. Curtarolo, High-throughput electronic band structure calculations: challenges and tools. Comput. Mater. Sci. 49, 299 (2010)

    Article  Google Scholar 

  98. S. Yanagisawa, Y. Morikawa, A. Schindlmayr, Homo band dispersion of crystalline rubrene: effects of self-energy corrections within the GW approximation. Phys. Rev. B 88, 115438 (2013)

    Article  CAS  Google Scholar 

  99. S. Yanagisawa, Y. Morikawa, A. Schindlmayr, Theoretical investigation of the band structure of picene single crystals within the GW approximation. Jpn. J. Appl. Phys. 53, 05FY02 (2014)

    Google Scholar 

  100. E.L. Shirley, Many-body effects on bandwidths in ionic, noble gas, and molecular solids. Phys. Rev. B 58, 9579 (1998)

    Article  CAS  Google Scholar 

  101. E. Kwon, H. Oikawa, H. Kasai, H. Nakanishi, A fabrication method of organic nanocrystals using stabilizer-free emulsion. Cryst. Growth Des. 7(4), 600 (2007)

    Google Scholar 

  102. N. Ueno, S. Kera, Electron spectroscopy of functional organic thin films: deep insights into valence electronic structure in relation to charge transport property. Prog. Surf. Sci. 83(10–12), 490 (2008)

    Google Scholar 

  103. S. Ciuchi, R.C. Hatch, H. Höchst, C. Faber, X. Blase, S. Fratini, Molecular fingerprints in the electronic properties of crystalline organic semiconductors: from experiments to theory. Phys. Rev. Lett. 108, 256401 (2012)

    Article  CAS  PubMed  Google Scholar 

  104. K.H. Frank, P. Yannoulis, R. Dudde, E.E. Koch, Unoccupied molecular orbitals of aromatic hydrocarbons adsorbed on ag(111). J. Chem. Phys. 89(12), 7569 (1988). https://doi.org/10.1063/1.455720

  105. Y. Li, V. Coropceanu, J.L. Brédas, Thermal narrowing of the electronic bandwidths in organic molecular semiconductors: impact of the crystal thermal expansion. J. Phys. Chem. Lett. 3(22), 3325 (2012). https://doi.org/10.1021/jz301575u

  106. Y.C. Cheng, R.J. Silbey, D.A. da Silva Filho, J.P. Calbert, J. Cornil, J.L. Brédas, Three-dimensional band structure and bandlike mobility in oligoacene single crystals: a theoretical investigation. J. Chem. Phys. 118(8), 3764 (2003)

    Google Scholar 

  107. G.A. de Wijs, C.C. Mattheus, R.A. de Groot, T.T. Palstra, Anisotropy of the mobility of pentacene from frustration. Synth. Met. 139(1), 109 (2003)

    Google Scholar 

  108. H. Yoshida, N. Sato, Crystallographic and electronic structures of three different polymorphs of pentacene. Phys. Rev. B 77, 235205 (2008)

    Article  CAS  Google Scholar 

  109. D.A. da Silva Filho, E.G. Kim, J.L. Brédas, Transport properties in the rubrene crystal: electronic coupling and vibrational reorganization energy. Adv. Mater. 17, 1072 (2005)

    Article  CAS  Google Scholar 

  110. S.Y. Quek, M. Kamenetska, M.L. Steigerwald, H.J. Choi, S.G. Louie, M.S. Hybertsen, J.B. Neaton, L. Venkataraman, Mechanically controlled binary conductance switching of a single-molecule junction. Nat. Nanotechnol. 4, 230 EP (2009). https://doi.org/10.1038/nnano.2009.10

  111. J.C. Inkson, Many-body effect at metal-semiconductor junctions. II. The self energy and band structure distortion. J. Phys. C Solid State Phys. 6(8), 1350 (1973). http://stacks.iop.org/0022-3719/6/i=8/a=004

  112. J.B. Neaton, M.S. Hybertsen, S.G. Louie, Renormalization of molecular electronic levels at metal-molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006). https://doi.org/10.1103/PhysRevLett.97.216405

    Article  CAS  PubMed  Google Scholar 

  113. J.M. Garcia-Lastra, C. Rostgaard, A. Rubio, K.S. Thygesen, Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces. Phys. Rev. B 80(24), 245427 (2009). https://doi.org/10.1103/PhysRevB.80.245427

  114. Y. Chen, I. Tamblyn, S.Y. Quek, Energy level alignment at hybridized organic–metal interfaces: the role of many-electron effects. J. Phys. Chem. C 121(24), 13125 (2017). https://doi.org/10.1021/acs.jpcc.7b00715

  115. I. Tamblyn, P. Darancet, S.Y. Quek, S.A. Bonev, J.B. Neaton, Electronic energy level alignment at metal-molecule interfaces with a GW approach. Phys. Rev. B 84(20), 201402 (2011). https://doi.org/10.1103/PhysRevB.84.201402

  116. S.Y. Quek, L. Venkataraman, H.J. Choi, S.G. Louie, M.S. Hybertsen, J.B. Neaton, Amine-gold linked single-molecule circuits: experiment and theory. Nano Lett. 7(11), 3477 (2007). https://doi.org/10.1021/nl072058i

  117. D.A. Egger, Z.F. Liu, J.B. Neaton, L. Kronik, Reliable energy level alignment at physisorbed molecule–metal interfaces from density functional theory. Nano Lett. 15(4), 2448 (2015). https://doi.org/10.1021/nl504863r

  118. L. Kronik, T. Stein, S. Refaely-Abramson, R. Baer, Excitation gaps of finite-sized systems from optimally tuned range-separated hybrid functionals. J. Chem. Theory Comput. 8(5), 1515 (2012). https://doi.org/10.1021/ct2009363

  119. R. Baer, E. Livshits, U. Salzner, Tuned range-separated hybrids in density functional theory. Annu. Rev. Phys. Chem. 61(1), 85 (2010). https://doi.org/10.1146/annurev.physchem.012809.103321

  120. Z.F. Liu, D.A. Egger, S. Refaely-Abramson, L. Kronik, J.B. Neaton, Energy level alignment at molecule-metal interfaces from an optimally tuned range-separated hybrid functional. J. Chem. Phys. 146(9), 092326 (2017). https://doi.org/10.1063/1.4975321

  121. P.M. Echenique, J.B. Pendry, The existence and detection of Rydberg states at surfaces. J. Phys. C Solid State Phys. 11(10), 2065 (1978). http://stacks.iop.org/0022-3719/11/i=10/a=017

  122. P.M. Echenique, J.B. Pendry, Theory of image states at metal surfaces. Prog. Surf. Sci. 32(2), 111 (1989). https://doi.org/10.1016/0079-6816(89)90015-4. http://www.sciencedirect.com/science/article/pii/0079681689900154

  123. I.R. Collins, P.T. Andrews, A.R. Law, Unoccupied electronic states of single-crystal graphite by angle-resolved ultraviolet inverse photoemission. Phys. Rev. B 38, 13348 (1988). https://doi.org/10.1103/PhysRevB.38.13348

    Article  CAS  Google Scholar 

  124. J. Lehmann, M. Merschdorf, A. Thon, S. Voll, W. Pfeiffer, Properties and dynamics of the image potential states on graphite investigated by multiphoton photoemission spectroscopy. Phys. Rev. B 60(24), 17037 (1999). https://doi.org/10.1103/PhysRevB.60.17037

  125. M. Zamkov, N. Woody, S. Bing, H.S. Chakraborty, Z. Chang, U. Thumm, P. Richard, Time-resolved photoimaging of image-potential states in carbon nanotubes. Phys. Rev. Lett. 93, 156803 (2004). https://doi.org/10.1103/PhysRevLett.93.156803

    Article  CAS  PubMed  Google Scholar 

  126. M. Feng, J. Zhao, H. Petek, Atomlike, hollow-core–bound molecular orbitals of c60. Science 320(5874), 359 (2008). https://doi.org/10.1126/science.1155866. http://science.sciencemag.org/content/320/5874/359

  127. J. Zhao, M. Feng, J. Yang, H. Petek, The superatom states of fullerenes and their hybridization into the nearly free electron bands of fullerites. ACS Nano 3(4), 853 (2009). https://doi.org/10.1021/nn800834k

  128. V.M. Silkin, J. Zhao, F. Guinea, E.V. Chulkov, P.M. Echenique, H. Petek, Image potential states in graphene. Phys. Rev. B 80(12), 121408 (2009). https://doi.org/10.1103/PhysRevB.80.121408

  129. M. Posternak, A. Baldereschi, A.J. Freeman, E. Wimmer, Prediction of electronic surface states in layered materials: graphite. Phys. Rev. Lett. 52, 863 (1984). https://doi.org/10.1103/PhysRevLett.52.863

    Article  CAS  Google Scholar 

  130. N.A.W. Holzwarth, S.G. Louie, S. Rabii, X-ray form factors and the electronic structure of graphite. Phys. Rev. B 26, 5382 (1982). https://doi.org/10.1103/PhysRevB.26.5382

    Article  CAS  Google Scholar 

  131. T. Fauster, F.J. Himpsel, J.E. Fischer, E.W. Plummer, Three-dimensional energy band in graphite and lithium-intercalated graphite. Phys. Rev. Lett. 51, 430 (1983). https://doi.org/10.1103/PhysRevLett.51.430

    Article  CAS  Google Scholar 

  132. S. Bose, V.M. Silkin, R. Ohmann, I. Brihuega, L. Vitali, C.H. Michaelis, P. Mallet, J.Y. Veuillen, M.A. Schneider, E.V. Chulkov, P.M. Echenique, K. Kern, Image potential states as a quantum probe of graphene interfaces. New J. Phys. 12(2), 023028 (2010)

    Google Scholar 

  133. I.D. White, R.W. Godby, M.M. Rieger, R.J. Needs, Dynamic image potential at an al(111) surface. Phys. Rev. Lett. 80, 4265 (1998). https://doi.org/10.1103/PhysRevLett.80.4265

    Article  CAS  Google Scholar 

  134. I. Hamada, Y. Hamamoto, Y. Morikawa, Image potential states from the van der waals density functional. J. Chem. Phys. 147(4), 044708 (2017). https://doi.org/10.1063/1.4995441

  135. O. Leenaerts, B. Partoens, F.M. Peeters, A. Volodin, C.V. Haesendonck, The work function of few-layer graphene. J. Phys. Condens. Matter 29(3), 035003 (2017). http://stacks.iop.org/0953-8984/29/i=3/a=035003

  136. I. Hamada, S. Yanagisawa, Pseudopotential approximation in van der waals density functional calculations. Phys. Rev. B 84, 153104 (2011). https://doi.org/10.1103/PhysRevB.84.153104

    Article  CAS  Google Scholar 

  137. N. Ferri, A. Ambrosetti, A. Tkatchenko, Electronic charge rearrangement at metal/organic interfaces induced by weak van der waals interactions. Phys. Rev. Mater. 1, 026003 (2017). https://doi.org/10.1103/PhysRevMaterials.1.026003

    Article  Google Scholar 

  138. N. Ferri, R.A. DiStasio, A. Ambrosetti, R. Car, A. Tkatchenko, Electronic properties of molecules and surfaces with a self-consistent interatomic van der waals density functional. Phys. Rev. Lett. 114, 176802 (2015). https://doi.org/10.1103/PhysRevLett.114.176802

    Article  PubMed  CAS  Google Scholar 

  139. M. Shibuta, N. Hirata, T. Eguchi, A. Nakajima, Probing of an adsorbate-specific excited state on an organic insulating surface by two-photon photoemission spectroscopy. J. Am. Chem. Soc. 136(5), 1825 (2014)

    Google Scholar 

  140. M. Shibuta, N. Hirata, R. Matsui, M. Nakaya, T. Eguchi, A. Nakajima, Excitation and relaxation dynamics of two-dimensional photoexcited electrons on alkanethiolate self-assembled monolayers. J. Phys. Chem. C 119(40), 22945 (2015)

    Google Scholar 

  141. M. Shibuta, N. Hirata, T. Eguchi, A. Nakajima, Photoexcited state confinement in two-dimensional crystalline anthracene monolayer at room temperature. ACS Nano 11(4), 4307 (2017)

    Google Scholar 

  142. T. Yamada, M. Shibuta, Y. Ami, Y. Takano, A. Nonaka, K. Miyakubo, T. Munakata, Novel growth of naphthalene overlayer on Cu(111) studied by STM, LEED, and 2PPE. J. Phys. Chem. C 114(31), 13334 (2010)

    Google Scholar 

  143. C. Bondi, P. Baglioni, G. Taddei, Structure of the monolayers of aromatic molecules adsorbed on graphite. Chem. Phys. 96(2), 277 (1985). https://doi.org/10.1016/0301-0104(85)85091-6. http://www.sciencedirect.com/science/article/pii/0301010485850916

  144. U. Bardi, S. Magnanelli, G. Rovida, Leed study of benzene and naphthalene monolayers adsorbed on the basal plane of graphite. Langmuir 3(2), 159 (1987). https://doi.org/10.1021/la00074a003

  145. T. Yamada, Y. Takano, M. Isobe, K. Miyakubo, T. Munakata, Growth and adsorption geometry of naphthalene overlayers on HOPG studied by low-temperature scanning tunneling microscopy. Chem. Phys. Lett. 546, 136 (2012). https://doi.org/10.1016/j.cplett.2012.08.011. http://www.sciencedirect.com/science/article/pii/S0009261412009128

  146. F. Sojka, M. Meissner, T. Yamada, T. Munakata, R. Forker, T. Fritz, Naphthalene’s six shades on graphite: a detailed study on the polymorphism of an apparently simple system. J. Phys. Chem. C 120(40), 22972 (2016). https://doi.org/10.1021/acs.jpcc.6b06702

  147. S. Okada, Y. Enomoto, K. Shiraishi, A. Oshiyama, New electron states that float on semiconductor and metal surfaces. Surf. Sci. 585(3), L177 (2005)

    Google Scholar 

  148. M. Kutschera, M. Weinelt, M. Rohlfing, T. Fauster, Image-potential-induced surface state at si (100). Appl. Phys. A 88(3), 519 (2007)

    Google Scholar 

  149. M. Rohlfing, N.P. Wang, P. Krüger, J. Pollmann, Image states and excitons at insulator surfaces with negative electron affinity. Phys. Rev. Lett. 91(25), 256802 (2003)

    Google Scholar 

  150. B. Baumeier, P. Krüger, J. Pollmann, Bulk and surface electronic structures of alkaline-earth metal oxides: bound surface and image-potential states from first principles. Phys. Rev. B 76(20), 205404 (2007)

    Google Scholar 

  151. S. Saito, A. Oshiyama, Cohesive mechanism and energy bands of solid c60. Phys. Rev. Lett. 66, 2637 (1991). https://doi.org/10.1103/PhysRevLett.66.2637

    Article  CAS  PubMed  Google Scholar 

  152. S. Okada, A. Oshiyama, S. Saito, Nearly free electron states in carbon nanotube bundles. Phys. Rev. B 62, 7634 (2000). https://doi.org/10.1103/PhysRevB.62.7634

    Article  CAS  Google Scholar 

  153. S. Okada, S. Saito, A. Oshiyama, Energetics and electronic structures of encapsulated C 60 in a carbon nanotube. Phys. Rev. Lett. 86, 3835 (2001). https://doi.org/10.1103/PhysRevLett.86.3835

    Article  CAS  PubMed  Google Scholar 

  154. T. Miyake, S. Saito, Electronic structure of potassium-doped carbon nanotubes. Phys. Rev. B 65, 165419 (2002). https://doi.org/10.1103/PhysRevB.65.165419

    Article  CAS  Google Scholar 

  155. T. Miyake, S. Saito, Quasiparticle band structure of carbon nanotubes. Phys. Rev. B 68(15), 155424 (2003)

    Google Scholar 

  156. E.R. Margine, V.H. Crespi, Universal behavior of nearly free electron states in carbon nanotubes. Phys. Rev. Lett. 96, 196803 (2006). https://doi.org/10.1103/PhysRevLett.96.196803

    Article  CAS  PubMed  Google Scholar 

  157. S. Hu, J. Zhao, Y. Jin, J. Yang, H. Petek, J. Hou, Nearly free electron superatom states of carbon and boron nitride nanotubes. Nano Lett. 10(12), 4830 (2010)

    Google Scholar 

  158. N. Sato, K. Seki, H. Inokuchi, Polarization energies of organic solids determined by ultraviolet photoelectron spectroscopy. J. Chem. Soc. Faraday Trans. 2, 1621 (1981)

    Article  Google Scholar 

  159. S. Refaely-Abramson, S. Sharifzadeh, M. Jain, R. Baer, J.B. Neaton, L. Kronik, Gap renormalization of molecular crystals from density-functional theory. Phys. Rev. B 88, 081204 (2013). https://doi.org/10.1103/PhysRevB.88.081204

    Article  CAS  Google Scholar 

  160. J.E. Norton, J.L. Brédas, Polarization energies in oligoacene semiconductor crystals. J. Am. Chem. Soc. 130(37), 12377 (2008). https://doi.org/10.1021/ja8017797. PMID: 18715006

  161. P.K. Nayak, N. Periasamy, Calculation of electron affinity, ionization potential, transport gap, optical band gap and exciton binding energy of organic solids using ‘solvation’ model and DFT. Org. Electron. 10(7), 1396 (2009). https://doi.org/10.1016/j.orgel.2009.06.011. http://www.sciencedirect.com/science/article/pii/S1566119909001815

  162. N. Sato, H. Inokuchi, E.A. Silinsh, Reevaluation of electronic polarization energies in organic molecular crystals. Chem. Phys. 115(2), 269 (1987). https://doi.org/10.1016/0301-0104(87)80041-1. http://www.sciencedirect.com/science/article/pii/0301010487800411

  163. W. Kohn, Density functional and density matrix method scaling linearly with the number of atoms. Phys. Rev. Lett. 76, 3168 (1996). https://doi.org/10.1103/PhysRevLett.76.3168

    Article  CAS  PubMed  Google Scholar 

  164. D. Deutsch, A. Natan, Y. Shapira, L. Kronik, Electrostatic properties of adsorbed polar molecules: opposite behavior of a single molecule and a molecular monolayer. J. Am. Chem. Soc. 129(10), 2989 (2007)

    Google Scholar 

  165. B.J. Topham, Z.G. Soos, Ionization in organic thin films: electrostatic potential, electronic polarization, and dopants in pentacene films. Phys. Rev. B 84, 165405 (2011). https://doi.org/10.1103/PhysRevB.84.165405

    Article  CAS  Google Scholar 

  166. E.V. Tsiper, Z.G. Soos, Charge redistribution and polarization energy of organic molecular crystals. Phys. Rev. B 64, 195124 (2001). https://doi.org/10.1103/PhysRevB.64.195124

    Article  CAS  Google Scholar 

  167. J. Li, G. D’Avino, I. Duchemin, D. Beljonne, X. Blase, Accurate description of charged excitations in molecular solids from embedded many-body perturbation theory. Phys. Rev. B 97, 035108 (2018). https://doi.org/10.1103/PhysRevB.97.035108

    Article  CAS  Google Scholar 

  168. W.G. Aulbur, L. Jönsson, J.W. Wilkins, in Quasiparticle Calculations in Solids, ed. by H. Ehrenreich, F. Spaepen. Solid State Physics, vol. 54 (Academic, 2000), pp. 1–218. https://doi.org/10.1016/S0081-1947(08)60248-9. http://www.sciencedirect.com/science/article/pii/S0081194708602489

  169. I.D. White, R.W. Godby, M.M. Rieger, R.J. Needs, Dynamic image potential at an al(111) surface. Phys. Rev. Lett. 80(19), 4265 (1998). https://doi.org/10.1103/PhysRevLett.80.4265

  170. H. Yoshida, Near-ultraviolet inverse photoemission spectroscopy using ultra-low energy electrons. Chem. Phys. Lett. 539–540, 180 (2012). https://doi.org/10.1016/j.cplett.2012.04.058. http://www.sciencedirect.com/science/article/pii/S000926141200557X

  171. H. Yoshida, Measuring the electron affinity of organic solids: an indispensable new tool for organic electronics. Anal. Bioanal. Chem. 406(9), 2231 (2014). https://doi.org/10.1007/s00216-014-7659-1

  172. H. Yoshida, Principle and application of low energy inverse photoemission spectroscopy: a new method for measuring unoccupied states of organic semiconductors. J. Electron Spectros. Relat. Phenomena 204, 116 (2015). https://doi.org/10.1016/j.elspec.2015.07.003. http://www.sciencedirect.com/science/article/pii/S0368204815001486

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research (C) (No. 18K03458), on Innovative Areas “3D Active-Site Science” (No. 26105011) and “Hydrogenomics” (No. 18H05519), and for Fund for the Promotion of Joint International Research (Fostering Joint International Research) (No. 16KK0115) from the Japan Society for the Promotion of Science (JSPS), by “Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures” and “High Performance Computing Infrastructure” in Japan (Project ID: jh180069-NAH), and by the Cooperative Research Program of Network Joint Research Center for Materials and Devices in ISIR, Osaka University. We acknowledge the Supercomputer Center, the Institute for Solid State Physics, the University of Tokyo, and the Cyberscience Center, Tohoku University, for the use of their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Yanagisawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yanagisawa, S., Hamada, I. (2020). Nanoscale First-Principles Electronic Structure Simulations of Materials Relevant to Organic Electronics. In: Onishi, T. (eds) Theoretical Chemistry for Advanced Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-0006-0_4

Download citation

Publish with us

Policies and ethics