Skip to main content

Quantum Hall States for \(\alpha = 1/3\) in Optical Lattices

  • Conference paper
  • First Online:
Quantum Collisions and Confinement of Atomic and Molecular Species, and Photons

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 230))

Abstract

We examine the quantum Hall (QH) states of the optical lattices with square geometry using Bose–Hubbard model (BHM) in presence of artificial gauge field. In particular, we focus on the QH states for the flux value of \(\alpha = 1/3\). For this, we use cluster Gutzwiller mean field (CGMF) theory with cluster sizes of \(3\times 2\) and \(3\times 3\). We obtain QH states at fillings \(\nu = 1/2, 1, 3/2, 2, 5/2\) with the cluster size \(3\times 2\) and \(\nu = 1/3, 2/3, 1, 4/3, 5/3, 2, 7/3, 8/3\) with \(3\times 3\) cluster. Our results show that the geometry of the QH states is sensitive to the cluster sizes. For all the values of \(\nu \), the competing superfluid (SF) state is the ground state and QH state is the metastable state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aidelsburger, M., Atala, M., Lohse, M., Barreiro, J.T., Paredes, B., Bloch, I.: Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185,301 (2013). https://doi.org/10.1103/PhysRevLett.111.185301

  2. Aidelsburger, M., Atala, M., Nascimbène, S., Trotzky, S., Chen, Y.A., Bloch, I.: Experimental realization of strong effective magnetic fields in an optical lattice. Phys. Rev. Lett. 107, 255,301 (2011). https://doi.org/10.1103/PhysRevLett.107.255301

  3. Anderson, B.P., Kasevich, M.A.: Macroscopic quantum interference from atomic tunnel arrays. Science 282, 1686 (1998). https://doi.org/10.1126/science.282.5394.1686. http://science.sciencemag.org/content/282/5394/1686

    Article  ADS  Google Scholar 

  4. Bai, R., Bandyopadhyay, S., Pal, S., Suthar, K., Angom, D.: Bosonic quantum Hall states in single-layer two-dimensional optical lattices (2018). Phy. Rev. A 98, 023606 (2018). https://doi.org/10.1103/PhysRevA.98.023606

  5. Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM (1994). https://doi.org/10.1137/1.9781611971538

  6. Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008). https://doi.org/10.1103/RevModPhys.80.885

    Article  ADS  Google Scholar 

  7. Dalibard, J., Gerbier, F., Juzeliūnas, G., Öhberg, P.: Colloquium: artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523 (2011). https://doi.org/10.1103/RevModPhys.83.1523

    Article  ADS  Google Scholar 

  8. Dean, C.R., Wang, L., Maher, P., Forsythe, C., Ghahari, F., Gao, Y., Katoch, J., Ishigami, M., Moon, P., Koshino, M., Taniguchi, T., Watanabe, K., Shepard, K.L., Hone, J., Kim, P.: Hofstadters butterfly and the fractal quantum hall effect in moir\(\acute{\rm e}\) superlattices. Nature 497, 598 (2013). https://doi.org/10.1038/nature12186

    Article  ADS  Google Scholar 

  9. Elliott, T.J., Johnson, T.H.: Nondestructive probing of means, variances, and correlations of ultracold-atomic-system densities via qubit impurities. Phys. Rev. A 93, 043,612 (2016). https://doi.org/10.1103/PhysRevA.93.043612

  10. Fisher, M.P.A., Weichman, P.B., Grinstein, G., Fisher, D.S.: Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546 (1989). https://doi.org/10.1103/PhysRevB.40.546

    Article  ADS  Google Scholar 

  11. Freericks, J.K., Krishnamurthy, H.R., Kato, Y., Kawashima, N., Trivedi, N.: Strong-coupling expansion for the momentum distribution of the Bose-Hubbard model with benchmarking against exact numerical results. Phys. Rev. A 79, 053,631 (2009). https://doi.org/10.1103/PhysRevA.79.053631

  12. Freericks, J.K., Monien, H.: Strong-coupling expansions for the pure and disordered Bose-Hubbard model. Phys. Rev. B 53, 2691–2700 (1996). https://doi.org/10.1103/PhysRevB.53.2691

    Article  ADS  Google Scholar 

  13. Gerster, M., Rizzi, M., Silvi, P., Dalmonte, M., Montangero, S.: Fractional quantum hall effect in the interacting hofstadter model via tensor networks. Phys. Rev. B 96, 195,123 (2017). https://doi.org/10.1103/PhysRevB.96.195123

  14. Greiner, M., Bloch, I., Mandel, O., Hänsch, T.W., Esslinger, T.: Exploring phase coherence in a 2D lattice of Bose-Einstein condensates. Phys. Rev. Lett. 87, 160,405 (2001). https://doi.org/10.1103/PhysRevLett.87.160405

  15. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T.W., Bloch, I.: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature (London) 415, 39 (2002). https://doi.org/10.1038/415039a

    Article  ADS  Google Scholar 

  16. Hafezi, M., Sørensen, A.S., Demler, E., Lukin, M.D.: Fractional quantum Hall effect in optical lattices. Phys. Rev. A 76, 023,613 (2007). https://doi.org/10.1103/PhysRevA.76.023613

  17. Harper, P.G.: Single band motion of conduction electrons in a uniform magnetic field. Proc. Phys. Soc. A 68, 874 (1955). http://iopscience.iop.org/0370-1298/68/10/304

    Article  ADS  Google Scholar 

  18. He, Y.C., Grusdt, F., Kaufman, A., Greiner, M., Vishwanath, A.: Realizing and adiabatically preparing bosonic integer and fractional quantum Hall states in optical lattices. Phys. Rev. B 96, 201,103 (2017). https://doi.org/10.1103/PhysRevB.96.201103

  19. Hofstadter, D.R.: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239 (1976). https://doi.org/10.1103/PhysRevB.14.2239

    Article  ADS  Google Scholar 

  20. Hügel, D., Strand, H.U.R., Werner, P., Pollet, L.: Anisotropic Harper-Hofstadter-Mott model: competition between condensation and magnetic fields. Phys. Rev. B 96, 054,431 (2017). https://doi.org/10.1103/PhysRevB.96.054431

  21. Jaksch, D., Bruder, C., Cirac, J.I., Gardiner, C.W., Zoller, P.: Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108 (1998). https://doi.org/10.1103/PhysRevLett.81.3108

    Article  ADS  Google Scholar 

  22. Jaksch, D., Zoller, P.: Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms. New J. Phys. 5, 56 (2003). https://doi.org/10.1088/1367-2630/5/1/356

    Article  ADS  Google Scholar 

  23. Jiménez-García, K., LeBlanc, L.J., Williams, R.A., Beeler, M.C., Perry, A.R., Spielman, I.B.: Peierls substitution in an engineered lattice potential. Phys. Rev. Lett. 108, 225,303 (2012). https://doi.org/10.1103/PhysRevLett.108.225303

  24. Kuno, Y., Shimizu, K., Ichinose, I.: Bosonic analogs of the fractional quantum Hall state in the vicinity of Mott states. Phys. Rev. A 95, 013,607 (2017). https://doi.org/10.1103/PhysRevA.95.013607

  25. Lewenstein, M., Sanpera, A., Ahufinger, V., Damski, B., Sen(De), A., Sen, U.: Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Adv. Phys. 56, 243 (2007). https://doi.org/10.1080/00018730701223200

    Article  ADS  Google Scholar 

  26. Lin, Y.J., Compton, R.L., Jimenez-Garcia, K., Phillips, W.D., Porto, J.V., Spielman, I.B.: A synthetic electric force acting on neutral atoms. Nat. Phys. 7, 531 (2011). https://doi.org/10.1038/nphys1954

    Article  ADS  Google Scholar 

  27. Lin, Y.J., Compton, R.L., Perry, A.R., Phillips, W.D., Porto, J.V., Spielman, I.B.: Bose-Einstein condensate in a uniform light-induced vector potential. Phys. Rev. Lett. 102, 130,401 (2009). https://doi.org/10.1103/PhysRevLett.102.130401

  28. Lühmann, D.S.: Cluster Gutzwiller method for bosonic lattice systems. Phys. Rev. A 87, 043,619 (2013). https://doi.org/10.1103/PhysRevA.87.043619

  29. Miyake, H., Siviloglou, G.A., Kennedy, C.J., Burton, W.C., Ketterle, W.: Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185,302 (2013). https://doi.org/10.1103/PhysRevLett.111.185302

  30. Natu, S.S., Mueller, E.J., Das Sarma, S.: Competing ground states of strongly correlated bosons in the Harper-Hofstadter-Mott model. Phys. Rev. A 93, 063,610 (2016). https://doi.org/10.1103/PhysRevA.93.063610

  31. Niemeyer, M., Freericks, J.K., Monien, H.: Strong-coupling perturbation theory for the two-dimensional Bose-Hubbard model in a magnetic field. Phys. Rev. B 60, 2357 (1999). https://doi.org/10.1103/PhysRevB.60.2357

    Article  ADS  Google Scholar 

  32. Oktel, M.O., Niţ ă, M., Tanatar, B.: Mean-field theory for Bose-Hubbard model under a magnetic field. Phys. Rev. B 75, 045,133 (2007). https://doi.org/10.1103/PhysRevB.75.045133

  33. Palmer, R.N., Jaksch, D.: High-field fractional quantum Hall effect in optical lattices. Phys. Rev. Lett. 96, 180,407 (2006). https://doi.org/10.1103/PhysRevLett.96.180407

  34. Palmer, R.N., Klein, A., Jaksch, D.: Optical lattice quantum Hall effect. Phys. Rev. A 78, 013,609 (2008). https://doi.org/10.1103/PhysRevA.78.013609

  35. Peierls, R.E.: On the theory of diamagnetism of conduction electrons. Z. Phys. 80, 763 (1933). https://doi.org/10.1007/BF01342591

  36. Peotta, S., Chien, C.C., Di Ventra, M.: Phase-induced transport in atomic gases: from superfluid to Mott insulator. Phys. Rev. A 90, 053,615 (2014). https://doi.org/10.1103/PhysRevA.90.053615

  37. Sheshadri, K., Krishnamurthy, H.R., Pandit, R., Ramakrishnan, T.V.: Superfluid and insulating phases in an interacting-boson model: mean-field theory and the RPA. EPL 22, 257 (1993). https://doi.org/10.1209/0295-5075/22/4/004. http://stacks.iop.org/0295-5075/22/i=4/a=004

    Article  ADS  Google Scholar 

  38. Sørensen, A.S., Demler, E., Lukin, M.D.: Fractional quantum Hall states of atoms in optical lattices. Phys. Rev. Lett. 94, 086,803 (2005). https://doi.org/10.1103/PhysRevLett.94.086803

  39. Stöferle, T., Moritz, H., Schori, C., Köhl, M., Esslinger, T.: Transition from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130,403 (2004). https://doi.org/10.1103/PhysRevLett.92.130403

  40. Streif, M., Buchleitner, A., Jaksch, D., Mur-Petit, J.: Measuring correlations of cold-atom systems using multiple quantum probes. Phys. Rev. A 94, 053,634 (2016). https://doi.org/10.1103/PhysRevA.94.053634

  41. Umucalılar, R.O., Oktel, M.O.: Phase boundary of the boson Mott insulator in a rotating optical lattice. Phys. Rev. A 76, 055,601 (2007). https://doi.org/10.1103/PhysRevA.76.055601

  42. Umucalilar, R.O., Mueller, E.J.: Fractional quantum Hall states in the vicinity of Mott plateaus. Phys. Rev. A 81, 053,628 (2010). https://doi.org/10.1103/PhysRevA.81.053628

  43. Wang, T., Zhang, X.F., Hou, C.F., Eggert, S., Pelster, A.: High-order strong-coupling expansion for the Bose-Hubbard model (2018). arXiv:1801.01862

  44. Wessel, S., Alet, F., Troyer, M., Batrouni, G.: Quantum Monte Carlo simulations of confined bosonic atoms in optical lattices. Phys. Rev. A 70, 053,615 (2004). https://doi.org/10.1103/PhysRevA.70.053615

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.  Angom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, R., Bandyopadhyay, S., Pal, S., Suthar, K., Angom, D. (2019). Quantum Hall States for \(\alpha = 1/3\) in Optical Lattices. In: Deshmukh, P., Krishnakumar, E., Fritzsche, S., Krishnamurthy, M., Majumder, S. (eds) Quantum Collisions and Confinement of Atomic and Molecular Species, and Photons. Springer Proceedings in Physics, vol 230. Springer, Singapore. https://doi.org/10.1007/978-981-13-9969-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9969-5_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9968-8

  • Online ISBN: 978-981-13-9969-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics