Skip to main content

Spectroscopic Studies of \({^1}\mathrm {\varSigma }^+\) States of HfH\(^+\) and PtH\(^+\) Molecular Ions

  • Conference paper
  • First Online:
Quantum Collisions and Confinement of Atomic and Molecular Species, and Photons

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 230))

  • 472 Accesses

Abstract

We have studied the potential energy curves (PECs) for \({^1}\mathrm {\varSigma }^+\) electronic states of HfH\(^+\) and PtH\(^+\) molecular ions using the self-consistent field (SCF) method and the coupled-cluster method with single and double excitations (CCSD). The spectroscopic constants derived from these potential energy curves are reported and compared with the available calculations in the literature. Further, the permanent dipole moment (PDM) of these molecular ions are calculated using the finite-field approach by applying a weak external electric field in the perturbative regime. Furthermore, vibrational parameters are obtained by solving the vibrational Schrödinger equation numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baron, J., Campbell, W.C., DeMille, D., Doyle, J.M., Gabrielse, G., Gurevich, Y.V., Hess, P.W., Hutzler, N.R., Kirilov, E., Kozyryev, I., O’Leary, B.R., Panda, C.D., Parsons, M.F., Spaun, B., Vutha, A.C., West, A.D., West, E.P., Collaboration, A.C.M.E.: Methods, analysis, and the treatment of systematic errors for the electron electric dipole moment search in thorium monoxide. New J. Phys. 19, 073029 (2017). https://doi.org/10.1088/1367-2630/aa708e

    Article  ADS  Google Scholar 

  2. Cairncross, W.B., Gresh, D.N., Grau, M., Cossel, K.C., Roussy, T.S., Ni, Y., Zhou, Y., Ye, J., Cornell, E.A.: Precision measurement of the electron’s electric dipole moment using trapped molecular ions. Phys. Rev. Lett. 119, 153001 (2017). https://doi.org/10.1103/PhysRevLett.119.153001

    Article  ADS  Google Scholar 

  3. Hudson, J.J., Kara, D.M., Smallman, I.J., Sauer, B.E., Tarbutt, M.R., Hinds, E.A.: Improved measurement of the shape of the electron. Nature 473, 493–496 (2011). https://doi.org/10.1038/nature10104

    Article  ADS  Google Scholar 

  4. Shafer-Ray, Neil E.: Possibility of 0-g-factor paramagnetic molecules for measurement of the electron’s electric dipole moment. Phys. Rev. A 73, 034102 (2006). https://doi.org/10.1103/PhysRevA.73.034102

    Article  ADS  Google Scholar 

  5. Meyer, E.R., Bohn, J.L.: Prospects for an electron electric-dipole moment search in metastable ThO and ThF\(^+\). Phys. Rev. A 78, 010502(R) (2008). https://doi.org/10.1103/PhysRevA.78.010502

    Article  ADS  Google Scholar 

  6. Prasannaa, V.S., Vutha, A.C., Abe, M., Das, B.P.: Mercury monohalides: suitability for electron electric dipole moment searches. Phys. Rev. Lett. 114, 183001 (2015). https://doi.org/10.1103/PhysRevLett.114.183001

    Article  ADS  Google Scholar 

  7. Meyer, E.R., Bohn, J.L., Deskevich, M.P.: Candidate molecular ions for an electron electric dipole moment experiment. Phys. Rev. A 73, 062108 (2006). https://doi.org/10.1103/PhysRevA.73.062108

    Article  ADS  Google Scholar 

  8. Skripnikov, L.V., Petrov, A.N., Titov, A.V., Mosyagin, N.S.: Electron electric dipole moment: Relativistic correlation calculations of the P, T-violation effect in the \(^3\Delta _3\) state of PtH\(^+\). Phys. Rev. A 80, 060501(R) (2009). https://doi.org/10.1103/PhysRevA.80.060501

    Article  ADS  Google Scholar 

  9. Dyall, K.G.: Relativistic effects on the bonding and properties of the hydrides of platinum. J. Chem. Phys. 98, 9678–9686 (1993). https://doi.org/10.1063/1.464346

    Article  ADS  Google Scholar 

  10. Zurita, S., Rubio, J., Illas, F., Barthelat, J.C.: Ab initio electronic structure of PtH\(^+\), PtH, Pt\(_2\), and Pt\(_2\)H from a one-electron pseudopotential approach. J. Chem. Phys. 104, 8500–8506 (1996). https://doi.org/10.1063/1.471600

    Article  ADS  Google Scholar 

  11. Shen, K., Suo, B., Zou, W.: Theoretical study of low-lying \(\Omega \) electronic states of PtH and PtH\(^+\). J. Phys. Chem. A 121, 3699–3707 (2017). https://doi.org/10.1021/acs.jpca.7b0305

  12. Ohanessian, G., Brusich, M.J., Goddard, W.A.: Theoretical study of transition-metal hydrides. 5. HfH\(^+\) through HgH\(^+\), BaH\(^+\), and LaH\(^+\). J. Am. Chem. Soc. 112, 7179–7189 (1990)

    Google Scholar 

  13. Bast, R., Saue, T., Visscher, L., Jensen, H.J.A.: In: Bakken, V., Dyall, K.G., Dubillard, S., Ekstroem, U., Eliav, E., Enevoldsen, T., Fasshauer, E., Fleig, T., Fossgaard, O., Gomes, A.S.P., Helgaker, T., Henriksson, J., Ilias, M., Jacob, Ch.R., Knecht, S., Komorovsky, S., Kullie, O., Laerdahl, J.K., Larsen, C.V., Lee, Y.S., Nataraj, H.S., Nayak, M.K., Norman, P., Olejniczak, G., Olsen, J., Park, Y.C., Pedersen, J.K., Pernpointner, M., Di Remigio, R., Ruud, K., Salek, P., Schimmelpfennig, B., Sikkema, J., Thorvaldsen, A.J., Thyssen, J., Stralen, J. van, Villaume, S., Visser, O., Winther, T., Yamamoto, S. (Contributors) DIRAC, a relativistic ab initio electronic structure program, Release DIRAC15 (2015). http://www.diracprogram.org

  14. Visscher, L.: Approximate molecular relativistic Dirac-Coulomb calculations using a simple Coulombic correction. Theor. Chim. Acta. 98, 68–70 (1997). https://doi.org/10.1007/s002140050280

    Article  Google Scholar 

  15. Dunning, Jr., T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989). https://doi.org/10.1063/1.456153

    Article  ADS  Google Scholar 

  16. Dyall, K.G.: Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 5d elements Hf\(-\)Hg. Theor. Chem. Acc. 112, 403–409 (2004). https://doi.org/10.1007/s00214-004-0607-y

    Article  ADS  Google Scholar 

  17. Karlström, G., Lindh, R., Malmqvist, P.-Å., Roos, B.O., Ryde, U., Veryazov, V., Widmark, P.-O., Cossi, M., Schimmelpfennig, B., Neogrády, P., Seijo, L.: MOLCAS: a program package for computational chemistry. Comput. Mat. Sci. 28, 222–239 (2003). https://doi.org/10.1016/S0927-0256(03)00109-5

    Article  Google Scholar 

  18. Banwell, C.N.: Fundamentals of Molecular Spectroscopy, 3rd edn. Tata McGraw-Hill Publishing Company Limited

    Google Scholar 

  19. Maroulis, G.: Hyperpolarizability of H\(_2\)O revisited: accurate estimate of the basis set limit and the size of electron correlation effects. Chem. Phys. Lett. 289, 403–411 (1998). https://doi.org/10.1016/S0009-2614(98)00439-4

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The relevant calculations, whose results are presented in this work, were performed on the computing facility available in the Department of Physics, IIT Roorkee and in the Department of Chemistry, TMU, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Bala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bala, R., Nataraj, H.S., Abe, M. (2019). Spectroscopic Studies of \({^1}\mathrm {\varSigma }^+\) States of HfH\(^+\) and PtH\(^+\) Molecular Ions. In: Deshmukh, P., Krishnakumar, E., Fritzsche, S., Krishnamurthy, M., Majumder, S. (eds) Quantum Collisions and Confinement of Atomic and Molecular Species, and Photons. Springer Proceedings in Physics, vol 230. Springer, Singapore. https://doi.org/10.1007/978-981-13-9969-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9969-5_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9968-8

  • Online ISBN: 978-981-13-9969-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics