Skip to main content

Microprocessor Based Edge Computing for an Internet of Things (IoT) Enabled Distributed Motion Control

  • Conference paper
  • First Online:
Advances in Computing and Data Sciences (ICACDS 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1046))

Included in the following conference series:

Abstract

Edge computing reduces latency, energy overhead and communication bandwidth bottlenecks. In this paper, a designed Proportional-Integrator (PI) motion controller for a Permanent Magnetic DC (PMDC) motor is integrated with IoT technology. This controller receives the preferred speed from the cloud, performs all necessary computation at Edge Level, derives actions and sends both output (real) speed and Integral Absolute Error (IAE) performance index (as an indication of controller performance) to the cloud. Firstly, both system identification and PI controller tuning are performed with the help of MATLAB Simulink and MATLAB support package for ARDUINO. ARDUINO Mega development board is used to implement the controller. An inbuilt PYTHON program in Raspberry Pi 3 is used as a software Gateway to enable receiving/sending data between the controller and the cloud (ThingSpeak.com IoT platform in our case). However, all necessary computations are intended to take place at Edge level only and this is for the tasks of improving latency, power consumption and bandwidth. Gateway level is used to gather the data coming from Edge level and send it to Cloud level; it is also used to send the data coming from Cloud level to the Edge level. Cloud level is the user interface to the system and enables him to control the speed and receive the controller working performance. An integrated work is the main contribution of current paper in which an attempt to construct a link between research works in both control systems and industrial IoT fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tosiron, A., Anita, R., et al.: Microprocessor optimizations for the internet of things: a survey. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 37(1), 7–20 (2018)

    Article  Google Scholar 

  2. Xu, L.D., He, W., Shancang, L.: Internet of things in industries. IEEE Trans. Ind. Inform. 10, 1–11 (2014)

    Article  Google Scholar 

  3. John, A.: Research directions for the internet of things. IEEE J. Internet of Things 1(1), 3–9 (2014)

    Article  Google Scholar 

  4. Shanzhi, C., Dake, L., et al.: A vision of IoT: applications, challenges, and opportunities with china perspective. IEEE Internet of Things J. 1(4), 349–359 (2014)

    Article  Google Scholar 

  5. Liu, T., Martonosi, M.: A middleware system for managing autonomic, parallel sensor systems. ACM SIGPLAN Not. 38(10), 107–118 (2003)

    Article  Google Scholar 

  6. Heinzelman, W.B., Murphy, A.L., Carvalho, H.S., Perillo, M.A.: Middleware to support sensor network applications. IEEE Netw. 18(1), 6–14 (2004)

    Article  Google Scholar 

  7. Ashton, K.: That ‘internet of things’ thing, in the real world things matter more than ideas. RFID J. (2009). Atmel Corporation.www.atmel.com

  8. IEEE: Internet of Things. http://iot.ieee.org/about.html. Accessed Jan 2017

  9. Gershenfeld, N., Krikorian, R., Cohen, D.: The internet of things. Sci. Am. 291(4), 76–81 (2004)

    Article  Google Scholar 

  10. http://cordis.europa.eu/search/index.cfm?fuseaction=news.document&N_RCN=30283

  11. http://services.future-internet.eu/images/1/16/A4_Things_Haller.pdf

  12. Deploying RFID - Challenges, Solutions, and Open Issues. Book edited by C. Turcu, under CC BY-NC-SA 3.0 license, 17 August 2011. ISBN 978-953-307-380-4

    Google Scholar 

  13. EPOSS, E. ETP EPOSS IOT Definition (2011). http://old.smartsystemsintegration.org/internet-of-things/Internet-of-Thingsin2020EC-EPoSSWorkshopReport-2008v3.pdf/download

  14. Saad, M., Pavlos, N., et al.: Delay mitigation in offloaded cloud controllers in industrial IoT. IEEE Access 5, 4418–4430 (2017)

    Article  Google Scholar 

  15. Zhang, D., Chen, Y.K., Tom, C., et al.: Compensation scheme of position angle errors of permanent-magnet linear motors. IEEE Trans. Magn. 43(10), 3868–3871 (2007)

    Article  Google Scholar 

  16. Tan, K.K., Lee, T.H., Dou, H.F., Chin, S.J., Zhao, S.: Precision motion control with disturbance observer for pulse width-modulated driven permanent-magnet linear motors. IEEE Trans. Magn. 3, 1813–1818 (2003)

    Google Scholar 

  17. Otten, G., Vries, T.J.A., Amerongen, J., Rankers, A.M., Gaal, E.W.: Linear motor motion control using a learning feedforward controller. IEEE/ASME Trans. Mechatron. 2(3), 179–187 (1997)

    Article  Google Scholar 

  18. Sankardoss, V., Geethanjali, P.: PMDC motor parameters estimation using bio-inspired optimization algorithms. IEEE Access 5, 11244–11254 (2017)

    Article  Google Scholar 

  19. Salah, M., Abdelatif, M.: Parameters identification of a permanent magnet DC Motor. Conference Paper, pp. 675–685 (2010). 10.2316/P

    Google Scholar 

  20. Kumar, C.A.: Multi-objective PI controller design with an application to speed control of permanent magnet DC motor drives. In: ICSCCN, pp. 424–429. IEEE (2011)

    Google Scholar 

  21. Vermeulen, H.J., Strauss, J.M.: Off-line identification of an open-loop automatic voltage regulator using pseudo-random binary sequence perturbations. IEEE, 0-7803-5546-6/99/, pp. 799–802 (1999)

    Google Scholar 

  22. Martins, F.G.: Tuning PID controllers using the ITAE criterion. Tempus Publ. 21(5), 867–873 (2005)

    Google Scholar 

  23. Wasim, S., et al.: Microprocessor based permanent magnetic DC motor system identification and optimal PI controller design. In: Proceedings of the 12th INDIACom, IEEE Conference ID: 42835, pp. 1020–1026 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wasim Ghder Soliman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soliman, W.G., Reddy, D.V.R.K. (2019). Microprocessor Based Edge Computing for an Internet of Things (IoT) Enabled Distributed Motion Control. In: Singh, M., Gupta, P., Tyagi, V., Flusser, J., Ören, T., Kashyap, R. (eds) Advances in Computing and Data Sciences. ICACDS 2019. Communications in Computer and Information Science, vol 1046. Springer, Singapore. https://doi.org/10.1007/978-981-13-9942-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9942-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9941-1

  • Online ISBN: 978-981-13-9942-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics