Skip to main content

Frequency Comb-Based Multidimensional Coherent Spectroscopy

  • Chapter
  • First Online:
Coherent Multidimensional Spectroscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 226))

Abstract

We present a novel approach to multidimensional coherent spectroscopy that utilizes optical frequency combs. This approach enables the measurement of a multidimensional coherent spectrum rapidly and with unprecedented frequency resolution. To demonstrate the improvements in resolution and data acquisition speed we apply this method to Doppler broadened Rb atoms whose energy level splittings are of the order of hundreds of MHz and measure a rephasing 2D spectrum. We also show how this method can probe and give insight about extremely weak dipole-dipole interactions in an atomic vapor. This novel method has the potential to become a field deployable device for chemical sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S.T. Cundiff, S. Mukamel, Optical multidimensional coherent. Spectroscopy 66, 44–49 (2013). https://doi.org/10.1063/pt.3.2047

    Article  Google Scholar 

  2. C.L. Smallwood, S.T. Cundiff, Coherent spectroscopy: multidimensional coherent spectroscopy of semiconductors. Laser Photon. Rev. 12, 1870052 (2018). https://doi.org/10.1002/lpor.201870052

    Article  ADS  Google Scholar 

  3. M. Thämer, L. De Marco, K. Ramasesha, A. Mandal, A. Tokmakoff, Ultrafast 2D IR spectroscopy of the excess proton in liquid water. Science 350, 78–82 (2015). https://doi.org/10.1126/science.aab3908

    Article  ADS  Google Scholar 

  4. X. Dai et al., Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor. Phys. Rev. Lett. 108, 193201 (2012). https://doi.org/10.1103/PhysRevLett.108.193201

  5. P. Tian, D. Keusters, Y. Suzaki, W.S. Warren, Femtosecond phase-coherent two-dimensional spectroscopy. Science 300, 1553 (2003). https://doi.org/10.1126/science.1083433

    Article  ADS  Google Scholar 

  6. P. Hamm, M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  7. R.R. Ernst, G. Bodenhausen, and A. Wokaun. Principles of Nuclear Magnetic Resonance in One and Two Dimensions. (Oxford University Press, London, 1987)

    Google Scholar 

  8. N.A. Kurnit, I.D. Abella, S.R. Hartmann, Observation of a photon echo. Phys. Rev. Lett. 13, 567–568 (1964). https://doi.org/10.1103/PhysRevLett.13.567

    Article  ADS  Google Scholar 

  9. L. Yang, S. Mukamel, Two-dimensional correlation spectroscopy of two-exciton resonances in semiconductor quantum wells. Phys. Rev. Lett. 100, 057402 (2008). https://doi.org/10.1103/PhysRevLett.100.057402

    Article  ADS  Google Scholar 

  10. L. Yang, S. Mukamel, Revealing exciton-exciton couplings in semiconductors using multidimensional four-wave mixing signals. Phys. Rev. B 77, 075335 (2008). https://doi.org/10.1103/PhysRevB.77.075335

    Article  ADS  Google Scholar 

  11. S. Ravets et al., Coherent dipole–dipole coupling between two single Rydberg atoms at an electrically-tuned Förster resonance. Nat. Phys. 10, 914 (2014). https://doi.org/10.1038/nphys3119

    Article  Google Scholar 

  12. E. Collini et al., Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644 (2010). https://doi.org/10.1038/nature08811, https://www.nature.com/articles/nature08811#supplementary-information

    Article  ADS  Google Scholar 

  13. V. Bendkowsky et al., Observation of ultralong-range Rydberg molecules. Nature 458, 1005 (2009). https://doi.org/10.1038/nature07945

    Article  ADS  Google Scholar 

  14. S. Draeger, S. Roeding, T. Brixner, Rapid-scan coherent 2D fluorescence spectroscopy. Opt. Express 25, 3259–3267 (2017). https://doi.org/10.1364/OE.25.003259

    Article  ADS  Google Scholar 

  15. H. Frostig, T. Bayer, N. Dudovich, Y.C. Eldar, Y. Silberberg, Single-beam spectrally controlled two-dimensional Raman spectroscopy. Nat. Photonics 9, 339–343 (2015). https://doi.org/10.1038/nphoton.2015.64

    Article  ADS  Google Scholar 

  16. F.D. Fuller, D.E. Wilcox, J.P. Ogilvie, Pulse shaping based two-dimensional electronic spectroscopy in a background free geometry. Opt. Express 22, 1018–1027 (2014). https://doi.org/10.1364/OE.22.001018

    Article  ADS  Google Scholar 

  17. G. Nardin et al., Coherent excitonic coupling in an asymmetric double InGaAs quantum well arises from many-body effects. Phys. Rev. Lett. 112, 046402 (2014). https://doi.org/10.1103/PhysRevLett.112.046402

  18. J.P. Ogilvie, K.J. Kubarych, Advances in Atomic, Molecular, and Optical Physics, vol. 57 (Academic, New York, 2009), pp. 249–321

    Chapter  Google Scholar 

  19. G.S. Schlau-Cohen, J.M. Dawlaty, G.R. Fleming, Ultrafast multidimensional spectroscopy: principles and applications to photosynthetic systems. IEEE J. Sel. Top. Quantum Electron. 18, 283–295 (2012). https://doi.org/10.1109/JSTQE.2011.2112640

    Article  ADS  Google Scholar 

  20. P.F. Tekavec, G.A. Lott, A.H. Marcus, Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation. J. Chem. Phys. 127, 214307 (2007). https://doi.org/10.1063/1.2800560

    Article  ADS  Google Scholar 

  21. D.B. Turner, K.A. Nelson, Coherent measurements of high-order electronic correlations in quantum wells. Nature 466, 1089–1092 (2010). http://www.nature.com/nature/journal/v466/n7310/abs/nature09286.html#supplementary-information

    Article  ADS  Google Scholar 

  22. A.D. Bristow et al., A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy. Rev. Sci. Instrum. 80, 073108 (2009). https://doi.org/10.1063/1.3184103

    Article  ADS  Google Scholar 

  23. E. Harel, A.F. Fidler, G.S. Engel, Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy. Proc. Natl. Acad. Sci. 107, 16444 (2010). https://doi.org/10.1073/pnas.1007579107

    Article  ADS  Google Scholar 

  24. B. Lomsadze, C.W. Fehrenbach, B.D. DePaola, Calculation of ionization in direct-frequency comb spectroscopy. Phys. Rev. A 85, 043403 (2012). https://doi.org/10.1103/PhysRevA.85.043403

    Article  ADS  Google Scholar 

  25. B. Lomsadze, C.W. Fehrenbach, B.D. DePaola, Measurement of ionization in direct frequency comb spectroscopy. J. Appl. Phys. 113, 103105 (2013). https://doi.org/10.1063/1.4794813

    Article  ADS  Google Scholar 

  26. A. Marian, M.C. Stowe, J.R. Lawall, D. Felinto, J. Ye, United time-frequency spectroscopy for dynamics and global structure. Science 306, 2063–2068 (2004). https://doi.org/10.1126/science.1105660

    Article  ADS  Google Scholar 

  27. B. Lomsadze, Encyclopedia of Modern Optics, ed. by B.D. Guenther, D.G. Steel, 2nd ed. (Elsevier, Amsterdam, 2018), pp. 227–232

    Google Scholar 

  28. H.U. Jang et al., Interaction of a finite train of short pulses with an atomic ladder system. Phys. Rev. A 82, 043424 (2010). https://doi.org/10.1103/PhysRevA.82.043424

    Article  ADS  Google Scholar 

  29. F. Gao, S.T. Cundiff, H. Li, Probing dipole–dipole interaction in a rubidium gas via double-quantum 2D spectroscopy. Opt. Lett. 41, 2954–2957 (2016). https://doi.org/10.1364/OL.41.002954

    Article  ADS  Google Scholar 

  30. M.E. Siemens, G. Moody, H. Li, A.D. Bristow, S.T. Cundiff, Resonance lineshapes in two-dimensional Fourier transform spectroscopy. Opt. Express 18, 17699–17708 (2010). https://doi.org/10.1364/OE.18.017699

    Article  ADS  Google Scholar 

  31. I. Coddington, N. Newbury, W. Swann, Dual-comb spectroscopy. Optica 3, 414–426 (2016). https://doi.org/10.1364/OPTICA.3.000414

    Article  Google Scholar 

  32. I. Coddington, W.C. Swann, N.R. Newbury, Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2008). https://doi.org/10.1103/PhysRevLett.100.013902

  33. B.C. Smith, B. Lomsadze, S.T. Cundiff, Optimum repetition rates for dual-comb spectroscopy. Opt. Express 26, 12049–12056 (2018). https://doi.org/10.1364/OE.26.012049

    Article  ADS  Google Scholar 

  34. B.C. Smith, Fourier Transform Infrared Spectroscopy (CRC Press, Boca Raton, 1996)

    Google Scholar 

  35. M.-G. Suh, K.J. Vahala, Soliton microcomb range measurement. Science 359, 884–887 (2018). https://doi.org/10.1126/science.aao1968

    Article  ADS  Google Scholar 

  36. M.-G. Suh, Q.-F. Yang, K.Y. Yang, X. Yi, K.J. Vahala, Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016). https://doi.org/10.1126/science.aah6516

    Article  ADS  Google Scholar 

  37. P. Trocha et al., Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018). https://doi.org/10.1126/science.aao3924

    Article  ADS  Google Scholar 

  38. E. Lucas et al., Spatial multiplexing of soliton microcombs. Nat. Photonics 12, 699–705 (2018). https://doi.org/10.1038/s41566-018-0256-7

    Article  ADS  Google Scholar 

  39. T.J. Kippenberg, R. Holzwarth, S.A. Diddams, Microresonator-based optical frequency combs. Science 332, 555–559 (2011). https://doi.org/10.1126/science.1193968

    Article  ADS  Google Scholar 

  40. S. Boudreau, S. Levasseur, C. Perilla, S. Roy, J. Genest, Chemical detection with hyperspectral lidar using dual frequency combs. Opt. Express 21, 7411–7418 (2013). https://doi.org/10.1364/OE.21.007411

    Article  ADS  Google Scholar 

  41. M. Godbout, J.-D. Deschênes, J. Genest, Spectrally resolved laser ranging with frequency combs. Opt. Express 18, 15981–15989 (2010). https://doi.org/10.1364/OE.18.015981

    Article  ADS  Google Scholar 

  42. B. Lomsadze, S.T. Cundiff, Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy. Science 357, 1389–1391 (2017). https://doi.org/10.1126/science.aao1090

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. B. Lomsadze, S.T. Cundiff, Multi-heterodyne two dimensional coherent spectroscopy using frequency combs. Sci. Rep. 7, 14018 (2017). https://doi.org/10.1038/s41598-017-14537-z

    Article  ADS  Google Scholar 

  44. B. Lomsadze, S.T. Cundiff, Frequency-comb based double-quantum two-dimensional spectrum identifies collective hyperfine resonances in atomic vapor induced by dipole-dipole interactions. Phys. Rev. Lett. 120, 233401 (2018). https://doi.org/10.1103/PhysRevLett.120.233401

    Article  ADS  Google Scholar 

  45. B. Lomsadze, B.C. Smith, S.T. Cundiff, Tri-comb spectroscopy. Nat. Photonics 12, 676–680 (2018). https://doi.org/10.1038/s41566-018-0267-4

    Article  ADS  Google Scholar 

  46. B. Lomsadze, S.T. Cundiff, Frequency comb-based four-wave-mixing spectroscopy. Opt. Lett. 42, 2346–2349 (2017). https://doi.org/10.1364/OL.42.002346

    Article  ADS  Google Scholar 

  47. S. Mukamel. Principles of Nonlinear Optical Spectroscopy. (Oxford University Press, New York, 1995)

    Google Scholar 

  48. S.T. Cundiff, Effects of correlation between inhomogeneously broadened transitions on quantum beats in transient four-wave mixing. Phys. Rev. A 49, 3114–3118 (1994). https://doi.org/10.1103/PhysRevA.49.3114

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research is based on work supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via contract 2018-18020600001. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the ODNI, IARPA, or the U.S. government. The U.S. government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation thereon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bachana Lomsadze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lomsadze, B., Cundiff, S.T. (2019). Frequency Comb-Based Multidimensional Coherent Spectroscopy. In: Cho, M. (eds) Coherent Multidimensional Spectroscopy. Springer Series in Optical Sciences, vol 226. Springer, Singapore. https://doi.org/10.1007/978-981-13-9753-0_15

Download citation

Publish with us

Policies and ethics