Skip to main content

Developments in Measurement and Modelling of Soil Organic Carbon

  • Chapter
  • First Online:
Carbon Management in Tropical and Sub-Tropical Terrestrial Systems

Abstract

Soil organic matter (SOM) plays an important role in maintaining soil quality, agriculture productivity, ecosystem functionality, as well as in environment moderation. Besides quantity, the composition of soil organic matter is vital for understanding the mechanism of carbon (C) sequestration in soils. A number of methods, with several variants, have been proposed to measure and characterize SOM. Conventional methods of soil organic carbon (SOC) measurement are not only laborious and time-consuming but also suffer from issues related to spatial variability. In the last few decades, several new methods including in situ techniques have been developed to minimize the uncertainties associated with the conventional procedures. Besides being more sensitive, the in situ techniques provide the possibility of repetitive and sequential measurements for spatial and temporal evaluation of soil C stock on a large scale. However, these methods are still evolving and pose some procedural limitations. Models have been used to overcome some of the problems associated with measurements and to upscale point measurements at different levels of spatial aggregation. Organic matter turnover models have been used to predict C sequestration potential of soils, assess and identify appropriate land-use and best management practices for C sequestration and to predict climate change effects on SOC. However, application of these models is constrained because of the lack of detailed spatial data, leading to the development of protocols for reducing input data requirements. In this chapter, we trace the developments in measurement and modelling organic matter dynamics in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison SD, Jastrow JD (2006) Activities of extracellular enzymes in physically isolated fraction of restored grassland soils. Soil Biol Biochem 38:3245–3256

    Article  CAS  Google Scholar 

  • Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221

    Article  CAS  Google Scholar 

  • Andrén O, Kätterer T (1997) ICBM – the Introductory Carbon Balance Model for exploration of soil carbon balances. Ecol ApplEcol Appl 7(4):1226–1236

    Article  Google Scholar 

  • Andrén O, Kätterer T, Karlsson T (2004) ICBM regional model for estimations of dynamics of agricultural soil carbon pools. Nutr Cycl Agroecosyst 70:213–239

    Article  Google Scholar 

  • Babu J, Li C, Frolking S, Nayak DR, Adhya TK (2006) Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems of India. Nutr Cycl Agroecosyst 74:157–174

    Article  CAS  Google Scholar 

  • Balaria A, Johnson CE, Xu Z (2009) Molecular-scale characterization of hot-water-extractable organic matter in organic horizons of a forest soil. Soil Sci Soc Am J 73:812–821

    Article  CAS  Google Scholar 

  • Baldock J (2007) Composition and cycling of organic carbon. In: Marschner P, Rengel Z (eds) Soil nutrient cycling in terrestrial ecosystems. Springer, Berlin/Heidelberg, pp 1–35

    Google Scholar 

  • Balesdent J, Wanger GH, Mariotti A (1988) Soil organic matter turnover in long-term field experiments as revealed by the 13C natural abundance in maize field. Soil Sci Soc Am J 52:118–124

    Article  CAS  Google Scholar 

  • Bellon-Maurel V, McBratney A (2011) Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils—critical review and research perspectives. Soil Biol Biochem 43:1398–1410

    Article  CAS  Google Scholar 

  • Benbi DK (2015) Enumeration of soil organic matter responses to land-use and management. J Indian Soc Soil Sci 63(Supplement):S14–S25

    Google Scholar 

  • Benbi DK (2018) Evaluation of a rapid microwave digestion method for determination of total organic carbon in soil. Commun Soil Sci Plant Anal 49:2103–2112

    Article  CAS  Google Scholar 

  • Benbi DK, Khosa MK (2014) Effect of temperature, moisture and chemical composition of organic substrates on C mineralization in soils. Commun Soil Sci Plant Anal 45:2734–2753

    Article  CAS  Google Scholar 

  • Benbi DK, Toor AS, Kumar S (2012) Management of organic amendments in rice-wheat cropping system determines the pool where carbon is sequestered. Plant Soil 360:145–162

    Article  CAS  Google Scholar 

  • Benbi DK, Boparai AK, Brar K (2014a) Decomposition of particulate organic matter is more sensitive to temperature than the mineral associated organic matter. Soil Biol Biochem 70:183–192

    Article  CAS  Google Scholar 

  • Benbi DK, Brar K, Toor AS, Singh P (2014b) Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India. Geoderma 237–238:149–158

    Google Scholar 

  • Benbi DK, Brar K, Toor AS, Sharma S (2015) Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system. Pedosphere 25:534–545

    Article  CAS  Google Scholar 

  • Benbi DK, Sharma S, Toor AS, Brar K, Sodhi GPS, Garg AK (2016) Differences in soil organic carbon pools and biological activity between organic and conventionally managed rice-wheat fields. Org Agric 8:1–14

    Article  Google Scholar 

  • Bosatta E, Ã…gren GI (1985) Theoretical-analysis of decomposition of heterogeneous substrates. Soil Biol Biochem 17:601–610

    Article  CAS  Google Scholar 

  • Bosatta E, Ã…gren GI (2003) Exact solutions to the continuous-quality equation for soil organic matter turnover. J Theor Biol 224:97–105

    Article  Google Scholar 

  • Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234

    Article  CAS  Google Scholar 

  • Butterbach-Bahl KF, Stange H, Papen LC (2001) Regional inventory of nitric oxide and nitrous oxide emissions for forest soils of southeast Germany using the biogeochemical model PnET-N-DNDC. J Geophys Res 106(D24):4155–4166

    Article  CAS  Google Scholar 

  • Cambardella CA, Elliott ET (1993) Methods for physical separation and characterization of soil organic matter fractions. Geoderma 56:449–457

    Article  Google Scholar 

  • Campbell EE, Paustian K (2015) Current developments in soil organic matter modeling and the expansion of model applications: a review. Environ Res Lett 10:123004

    Article  Google Scholar 

  • Chambers A, Lal R, Paustian K (2016) Soil carbon sequestration potential of US croplands and grasslands: implementing the 4 per thousand initiative. J Soil Water Conserv 71:68–74

    Article  Google Scholar 

  • Chan KY, Conyers MK, Li GD, Helyar KR, Poile GJ, Oates A, Barchia IM (2011) Soil carbon dynamics under different cropping and pasture management in temperate Australia: results of three long-term experiments. Aust J Soil Res 49:320–328

    Article  Google Scholar 

  • Chen F, Kissel DE, West LT, Adkins W (2000) Field-scale mapping of surface soil organic carbon using remotely sensed imagery. Soil Sci Soc Am J 64:746–753

    Article  CAS  Google Scholar 

  • Chertov OG, Komarov AS (1996) SOMM-a model of soil organic matter and nitrogen dynamics in terrestrial ecosystems. In: Powlson DS, Smith P, Smith JU (eds) Evaluation of soil organic matter models using existing long-term datasets, NATO ASI series I. Springer, Heidelberg, pp 231–236

    Chapter  Google Scholar 

  • Christensen BT (2001) Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur J Soil Sci 52:345–353

    Article  CAS  Google Scholar 

  • Coleman K, Jenkinson DS (1996) RothC-26.3 – a model for the turnover of carbon in soil. In: Powlson DS, Smith P, Smith JU (eds) Evaluation of soil organic matter models using existing long-term datasets, NATO ASI series I, vol 38. Springer, Heidelberg, pp 237–246

    Chapter  Google Scholar 

  • Coleman K, Jenkinson DS, Crocker GJ, Grace PR, Klir J, Körschens M, Poulton PR, Richter DD (1997) Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. In: Smith P, Powlson DS, Smith JU and Elliott ET (eds) Evaluation and comparison of soil organic matter models using datasets from seven long-term experiments. Geoderma 81:29–44

    Google Scholar 

  • Cresser MS, Gonzalez RL, Leon A (1991) Evaluation of the use of soil depth and parent material data when predicting soil organic carbon concentration from LOI values. Geoderma 140:132–139

    Article  CAS  Google Scholar 

  • Davidson EA, Trumbore SE, Amundson R (2000) Soil warming and organic carbon content. Nature 408:789–790

    Article  CAS  Google Scholar 

  • Davidson EA, Savage KE, Finzi AC (2014) A big-microsite framework for soil carbon modeling. Glob Chang Biol 203:610–620

    Google Scholar 

  • Degryze S, Six J, Paustian K, Sherri JM, Paul EA, Merckx R (2004) Soil organic carbon pool changes following landuse conversions. Glob Chang Biol 10:1120–1132

    Article  Google Scholar 

  • Easter M, Paustian K, Killian K, Williams S, Feng T. et al (2007) The GEFSOC soil carbon modelling system: a tool for conducting regional-scale soil carbon inventories and assessing the impacts of land use change on soil carbon. In: Milne E, Powlson DS, Cerri CEP (eds) Soil carbon stocks at regional scales. Agric Ecosyst Environ 122:13–25

    Google Scholar 

  • Ebinger MH, Norfleet ML, Breshears DD, Cremers DA, Ferris MJ, Unkefer PJ, Lamb MS, Goddard KL, Meyer CW (2003) Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement. Soil Sci Soc Am J 67:1616–1619

    Article  CAS  Google Scholar 

  • Ellert BH, Bettany JR (1992) Temperature dependence of net nitrogen and sulphur mineralization. Soil Sci Soc Am J 56:1133–1141

    Article  CAS  Google Scholar 

  • Ellert BH, Janzen HH, McConkey BG (2001) Measuring and comparing soil carbon storage. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Assessment methods for soil carbon. Lewis Publishers, Boca Raton. pp 131–145

    Google Scholar 

  • Farina R, Coleman K, Whitmore AP (2013) Modification of the RothC model for simulations of soil organic C dynamics in dryland regions. Geoderma 200–201:18–30

    Article  CAS  Google Scholar 

  • Florin MJ, McBratney AB, Whelan BM, Minasny B (2011) Inverse meta-modelling to estimate soil available water capacity at high spatial resolution across a farm. Precis Agric 12:421–438

    Article  Google Scholar 

  • Franko U (1996) Modelling approaches of soil organic matter turnover within the CANDY system. In: Powlson DS, Smith P, Smith JU (eds) Evaluation of soil organic matter models using existing long-term datasets, NATO ASI series I, vol 38. Springer, Heidelberg, pp 247–254

    Chapter  Google Scholar 

  • Gehl RJ, Rice CW (2007) Emerging technologies for in situ measurement of soil carbon. Clim Chang 80:43–54

    Article  CAS  Google Scholar 

  • Gilhespy SL, Anthony S, Cardenas L, Chadwick D, Prado AD, Li CS, Misselbrook T, Rees RM, Salas W, Sanz-Cobena A, Smith P, Tilston EL, Topp CFE, Vetter S, Yeluripati JB (2014) First 20 years of DNDC (DeNitrification DeComposition): model evolution. Ecol Model 292:51–62

    Article  CAS  Google Scholar 

  • Golchin A, Oades JM, Skejmstad JO, Clake P (1994) Soil structure and carbon cycling. Aus J Soil Res 32:1043–1068

    Article  Google Scholar 

  • Grace PR, Ladd JN, Robertson GP, Gage SH (2006) SOCRATES-A simple model for predicting long-term changes in soil organic carbon in terrestrial ecosystems. Soil Biol Biochem 38:1172–1176

    Article  CAS  Google Scholar 

  • Guo L, Falloon P, Coleman K, Zhou B, Li Y, Lin E, Zhang F (2012) Application of the RothC model to the results of long-term experiments on typical upland soils in northern China. Soil Use Manag 23:63–70

    Article  Google Scholar 

  • Haynes RJ (2005) Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Adv Agron 85:221–268

    Article  CAS  Google Scholar 

  • Hussain I, Olson KR (2000) Recovery rate of organic C in organic matter fractions of Grantsburg soils. Commun Soil Sci Plant Anal 31:995–1001

    Article  CAS  Google Scholar 

  • IPCC (2013) Mitigation of climate change summary for policymakers and technical summary; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland

    Google Scholar 

  • Jastrow JD (1996) Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol Biochem 28:656–676

    Article  Google Scholar 

  • Jenkinson DS (1990) The turnover of organic carbon and nitrogen in soil. Philos Trans R Soc Lond B 329:361–368

    Article  CAS  Google Scholar 

  • Jenkinson DS, Powlson DS (1976) The effects of biocidal treatment on metabolism in soil. I. Fumigation with chloroform. Soil Biol Biochem 8:167–177

    Article  CAS  Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic C storage. Soil Biol Biochem 27:753–760

    CAS  Google Scholar 

  • Kirschbaum MUF (2006) The temperature dependence of organic matter decomposition still a topic of debate. Soil Biol Biochem 38:2510–2518

    Article  CAS  Google Scholar 

  • Kleijnen JPC, van Groenendaal W (1992) Simulation: a statistical perspective. Wiley, Chichester

    Google Scholar 

  • Klimanek E-M (1997) Bedeutung der Ernte- und Wurzelruckstande landwirtschaftlichgenutzter Pflanzenarten fur die organische Substanz des Bodens. Arch Agron Soil Sci 41:485–511

    Article  CAS  Google Scholar 

  • Knorr W, Prentice IC, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301

    Article  CAS  Google Scholar 

  • Krull ES, Skjemstad JO (2003) d13C and d15N profiles in 14C-dated Oxisol and Vertisols as a function of soil chemistry and mineralogy. Geoderma 112:1–29

    Article  CAS  Google Scholar 

  • Kurbatova J, Li C, Varlagin A, Xiao X, Vygodskaya N (2008) Modeling carbon dynamics in two adjacent spruce forests with different soil conditions in Russia. Biogeosciences 5(4):969–980

    Article  CAS  Google Scholar 

  • Lal R (1997) Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2- enrichment. Soil Tillage Res 43:81–107

    Article  Google Scholar 

  • Lal R (2018) Digging deeper: a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob Chang Biol 24(8):3285–3301

    Article  Google Scholar 

  • Li C, Frolking S, Frolking TA (1992) A model of nitrous oxide evolution from soil driven by rainfall events, 1. Model structure and sensitivity. J Geophys Res 97:9759–9776

    Article  CAS  Google Scholar 

  • Li C, Zhuang Y, Frolking S, Galloway J, Harriss R, Moore B, Schimel D, Wang X (2003) Modeling soil organic carbon change in croplands of China. Ecol Appl 13:327–336

    Article  Google Scholar 

  • Li C, Mosier A, Wassmann R, Cai Z, Zheng X, Huang Y, Tsuruta H, Boonjawat J, Lantin R (2004) Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Glob Biogeochem Cycles 18(1):1–9

    Article  CAS  Google Scholar 

  • Li ZT, Li XG, Li M, Yang JY, Turner NC (2013) County-scale changes in soil organic carbon of croplands in southeastern Gansu Province of China from the 1980s to the mid-2000s. Soil Sci Soc Am J 77:2111–2121

    Article  CAS  Google Scholar 

  • Malamoud K, McBratney AB, Minasny B, Field DJ (2009) Modelling how carbon affects soil structure. Geoderma 149:19–26

    Article  CAS  Google Scholar 

  • McCarty GW, Reeves JB (2001) Development of rapid instrumental methods for measuring soil organic carbon. In: Lal R et al (eds) Assessment methods for soil carbon. Lewis Publ, Boca Raton, pp 371–380

    Google Scholar 

  • McCarty GW, Reeves JB, Reeves VB, Follet RF, Kimble JM (2002) Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Sci Soc Am J 66:640–646

    Article  CAS  Google Scholar 

  • Meyer R, Cullen BR, Johnson IR, Eckard RJ (2015) Process modelling to assess the sequestration and productivity benefits of soil carbon for pasture. Agric Ecosyst Environ 213:272–280

    Article  Google Scholar 

  • Muñoz-Rojas M, Jordán A, Zavala LM, González-Peñaloza FA, De la Rosa D, Pino-Mejias R, Anaya-Romero M (2013) Modelling soil organic carbon stocks in global change scenarios: a CarboSOIL application. Biogeosciences 10:8253–8268

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers L (1996) Total carbon, organic carbon and organic matter. In: Methods of soil analysis part 3. Chemical methods; Soil Sci Soc Am. and Am Soc Agron: Madison, WI, USA, pp 963–1010

    Google Scholar 

  • Nieder R, Benbi DK (2008) Carbon and nitrogen in the terrestrial environment. Springer, Heidelberg, Germany

    Book  Google Scholar 

  • Niklaus PA, Falloon P (2006) Estimating soil carbon sequestration under elevated CO2 by combining carbon isotope labeling with soil carbon cycle modelling. Glob Chang Biol 12:1909–1921

    Article  Google Scholar 

  • NOAA (2017) NOAA-ESRL Global Monitoring Mauna Loa CO2: April 2017. https://www.co2.earth/monthly-co2

  • Nordgren A, Bååth E, Söderström B (1988) Evaluation of soil respiration characteristics to assess heavy metal effect on soil microorganisms using glutamic acid as a substrate. Soil Biol Biochem 20:949–954

    Article  CAS  Google Scholar 

  • O’Leary G, Liu DL, Nuttall J, Anwar MR, Robertson F (2015) Modelling soil carbon in agricultural systems: a way to widen the experimental space. Earth Environ Sci 25:12–17

    Google Scholar 

  • Parton WJ (1996) The Century model. In: Powlson DS, Smith P, Smith JU (eds) Evaluation of soil organic matter models using existing long-term datasets, NATO ASI series I. Springer, Heidelberg, pp 283–293

    Chapter  Google Scholar 

  • Parton WJ, Stewart JBW, Cole CV (1987) Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5:109–131

    Article  Google Scholar 

  • Pathak H, Li C, Wassmann R (2005) Greenhouse gas emissions from Indian rice fields: calibration and upscaling using the DNDC model. Biogeosciences 2:113–123

    Article  CAS  Google Scholar 

  • Paul EA, Follet RF, Leavitt SW, Halvorson A, Peterson GA, Lyon DJ (1997) Radiocarbon dating for determination of soil organic matter pool sizes and dynamics. Soil Sci Soc Am J 61:1058–1067

    Article  CAS  Google Scholar 

  • Paul EA, Morris SJ, Bohm S (2001) The determination of soil C pool sizes and turnover rates: biophysical fractionation and tracers. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Assessment methods for soil carbon. Lewis Publ, Boca Raton, pp 193–206

    Google Scholar 

  • Petersen BM, Olesen JE, Heidmann T (2002) A flexible tool for simulation of soil carbon turnover. Ecol Model 151:1–14

    Article  CAS  Google Scholar 

  • Poeplau C, Don A, Six J, Kaiser M, Benbi D et al (2018) Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – a comprehensive method comparison. Soil Boil Biochem 125:10–16

    Article  CAS  Google Scholar 

  • Powlson D (2005) Will soil amplify climate change? Nature 433:204–205

    Article  CAS  Google Scholar 

  • Powlson DS, Brookes PC, Christensen BT (1987) Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol Biochem 19:159–164

    Article  CAS  Google Scholar 

  • Preston CM, Schnitzer M (1984) Effects of chemical modifications and extractants on the carbon-13 NMR spectra of humic materials. Soil Sci Soc Am J 48:305–311

    Article  CAS  Google Scholar 

  • Qiu J, Wang L, Tang H, Li H, Li C (2005) Studies on the situation of soil organic carbon storage in croplands in Northeast of China. Agric Sci China 4(1):101–105

    Google Scholar 

  • Reeves JB, Follett RF, McCarty GW, Kimble JM (2006) Can near or mid-infrared diffuse reflectance spectroscopy be used to determine soil carbon pools? Commun Soil Sci Plant Anal 37:2307–2325

    Article  CAS  Google Scholar 

  • Reichstein M, Kätterer K, Andrèn O, Ciais P, Schulze ED, Cramer W, Papale D, Valentini R (2005) Temperature sensitivity of decomposition in relation to soil organic matter pools: critique and outlook. Biogeosciences 2:317–321

    Article  CAS  Google Scholar 

  • Rovira P, Vallejo VR (2007) Labile, recalcitrant, and inert organic matter in Mediterranean forest soils. Soil Biol Biochem 39:202–215

    Article  CAS  Google Scholar 

  • Ruben R, van Ruijven A (2001) Technical coefficients for bio-economic farm household models: a meta-modelling approach with applications for Southern Mali. Ecol Econ 36:427–441

    Article  Google Scholar 

  • Santisteban JI, Mediavilla R, López-Pamo E, Dabrio CJ, Zapata MBR, García MJG, Castaño S, Martínez-Alfaro PE (2004) Loss on ignition: a qualitative or quantitative method for organic matter and carbonate mineral content in sediments? J Paleolimnol 32:287–299

    Article  Google Scholar 

  • Schnitzer M, Khan SU (1972) Humic substances in the environment. Marcel Dekker, NewYork

    Google Scholar 

  • Schnitzer M, Preston CM (1983) Effects of acid hydrolysis on the 13C NMR spectra of humic substances. Plant Soil 75:201–211

    Article  CAS  Google Scholar 

  • Segoli M, De Gryze S, Dou F, Lee J, Post WM, Denef K, Six J (2013) AggModel: a soil organic matter model with measurable pools for use in incubation studies. Ecol Model 263:1–9

    Article  CAS  Google Scholar 

  • Six J, Callewaert P, Lenders S, De Gryze S, Morris SJ, Gregorich EG, Paul EA, Paustian K (2002a) Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Sci Soc Am J 66:1981–1987

    Article  CAS  Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002b) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176

    Article  CAS  Google Scholar 

  • Sleutel S, De Neve S, Beheydt D, Li C, Hofman G (2006) Regional simulation of long term organic carbon stock changes in cropland soils using the DNDC model: 1. Largescale model validation against a spatially explicit data set. Soil Use Manag 22(4):342–351

    Article  Google Scholar 

  • Smith P, Smith JU, Powlson DS, McGill WB, Arah JRM, Chertov OG, Coleman K, Franko U, Frolking S, Jenkinson DS, Jensen LS, Kelly RH, Klein-Gunnewiek H, Komarov AS, Li C, JAE M, Mueller T, Parton WJ, JHM T, Whitmore AP (1997) A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81:153–225

    Article  Google Scholar 

  • Smith WN, Grant B, Desjardins RL, Lemke R, Li C (2004) Estimates of the interannual variations of N2O emissions from agricultural soils in Canada. Nutr Cycl Agroecosyst 68:37–45

    Article  CAS  Google Scholar 

  • Sollins P, Swanston C, Kleber M, Filley T, Kramer C, Crow SE, Caldwell BA, Lajtha K, Bowden RD (2006) Organic C and N stabilization in a forest soil: evidence from sequential density fractionation. Soil Biol Biochem 38:3313–3324

    Article  CAS  Google Scholar 

  • Stemmer M, Gerzabek MH, Kandeler E (1999) Invertase and xylanase activity of bulk soil and particle-size fractions during maize straw decomposition. Soil Biol Biochem 31:9–18

    Article  CAS  Google Scholar 

  • Stevens A, Van Wesemael B, Vandenschrick G, Touré S, Tychon B (2006) Detection of carbon stock change in agricultural soils using spectroscopic techniques. Soil Sci Soc Am J 70(3):844–850

    Article  CAS  Google Scholar 

  • Stockmann U, Adamsa MA, Crawforda JW, Field JD, Henakaarchchia N et al (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99

    Article  CAS  Google Scholar 

  • Taghizadeh-Toosi A, Olesen JE, Kristensen K, Elsgaard L, Østergaard HS, Lægds-mand M, Greve MH, Christensen BT (2014) Changes in carbon stocks of Danish agricultural mineral soils during 1986–2009. Eur J Soil Sci 65:730–740

    Article  CAS  Google Scholar 

  • Thornley JHM, Cannell MGR (1992) Nitrogen relations in a forest plantation - soil organic matter ecosystem model. Ann Bot 70:137–151

    Article  CAS  Google Scholar 

  • Tipping E, Chamberlain P, Fröberg M, Hanson P, Jardine P (2012) Simulation of carbon cycling, including dissolved organic carbon transport, in forest soil locally enriched with 14C. Biogeochemistry 108:91–107

    Article  CAS  Google Scholar 

  • Tivet F, Sá JCM, Borszowskei PR, Letourmy P, Briedis C, Ferreira AO, Santos JB, Inagaki TM (2012) Soil carbon inventory by wet oxidation and dry combustion methods: effects of land use, soil texture gradients and sampling depth on the linear model of C-equivalent correction factor. Soil Sci Soc Am J 76:1048–1059

    CAS  Google Scholar 

  • Totsche KU, Rennert T, Gerzabek MH, Kögel-Knabner I, Smalla K, Spiteller M, Vogel HJ (2010) Biogeochemical interfaces in soil: the interdisciplinary challenge for soil science. J Plant Nutr Soil Sci 173:88–99

    Article  CAS  Google Scholar 

  • van Ittersum MK, Ewert F, Heckelei T, Wery J, Olsson JA, Andersen E, Bezlepkina I, Brouwer F, Donatelli M, Flichman G, Olsson L, Rizzoli AE, van der Wal T, Wien JE, Wolf J (2008) Integrated assessment of agricultural systems—a component-based framework for the European Union (SEAMLESS). Agric Syst 96:150–165

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) Microbial biomass measurements in forest soils: the use of the chloroform fumigation- incubation method in strongly acid soils. Soil Biol Biochem 19:697–702

    Article  CAS  Google Scholar 

  • Verbene ELJ, Hassink J, de Willigen P, Groot JJR, Van Veen JA (1990) Modelling soil organic matter dynamics in different soils. Neth J Agric Sci 38:221–238

    Google Scholar 

  • Virto I, Moni C, Swanston C, Chenu C (2010) Turnover of intra- and extra-aggregate organic matter at the silt-size scale. Geoderma 156:1–10

    Article  CAS  Google Scholar 

  • von Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition-what do we know. Biol Fertil Soils 46:1–15

    Article  Google Scholar 

  • von Lützow M, Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B (2007) SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39:2183–2207

    Article  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37: 29–38

    Article  CAS  Google Scholar 

  • Wang GC, Luo Z, Han P, Chen H, Xu J (2016) Critical carbon input to maintain current soil organic arbon stocks in global wheat systems. Sci Rep 6:19327. https://doi.org/10.1038/srep19327

    Article  CAS  Google Scholar 

  • Wang G, Zhang W, Sun W, Li T, Han P (2017) Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems. Atmos Chem Phys 17:11849–11859

    Article  CAS  Google Scholar 

  • Wielopolski L, Orion I, Hendrey G, Rogers H (2000) Soil carbon measurements using inelastic neutron scattering. IEEE Trans Nucl Sci 47:914–917

    Article  CAS  Google Scholar 

  • Wielopolski L, Mitra S, Hendrey G, Rogers H, Torbert A, Prior S (2003) Non-destructive in situ soil carbon analysis: principles and results. Proc 2nd Nat Conf carbon sequestration: developing and validating the technology base to reduce carbon intensity. 5–8 May, 2003

    Google Scholar 

  • Williams JR, Jones CA, Dyke PT (1984) The EPIC model and its application. Proceedings of the international symposium on minimum data sets for agrotechnology transfer, pp 111–121

    Google Scholar 

  • Xu SX, Shi XZ, Zhao YC, Yu DS, Wang SH, Zhang LM, Li CS, Tan MZ (2011) Modeling carbon dynamics in Paddy soils in Jiangsu Province of China with soil databases differing in spatial resolution. Pedosphere 21:696–705

    Article  CAS  Google Scholar 

  • Yu HY, Ding WX, Luo JF, Donnison A, Zhang JB (2012) Long term effect of compost and inorganic fertilizer on activities of carbon-cycle enzymes in aggregates of an intensively cultivated sandy loam. Soil Use Manag 28:347–360

    Article  Google Scholar 

  • Zhang LM, Yu DS, Shi XZ, Xu SX, Wang SH, Xing SH, Zhao YC (2012) Simulation soil organic carbon change in China’s Tai-Lake paddy soils. Soil Tillage Res 121:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benbi, D.K., Nisar, S. (2020). Developments in Measurement and Modelling of Soil Organic Carbon. In: Ghosh, P., Mahanta, S., Mandal, D., Mandal, B., Ramakrishnan, S. (eds) Carbon Management in Tropical and Sub-Tropical Terrestrial Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-9628-1_23

Download citation

Publish with us

Policies and ethics