Skip to main content

Loss Minimization Control Scheme for LIM

  • Chapter
  • First Online:
Advanced Linear Machines and Drive Systems
  • 497 Accesses

Abstract

The linear induction motor (LIM) drive system suffers heavily from low efficiency due to its large air-gap length and the partial load conditions, where high loss appears in both LIM and inverter when a constant excitation current is generally engaged. Worse still, the end-effects, including both the transversal edge-effect and longitudinal end-effect, would lead to the decrease of magnetizing inductance and the increase of secondary resistance, resulting in extra loss and further deterioration of efficiency. To reduce the loss of LIM drive system, this chapter introduces several loss-model-based loss minimization control (LMC) schemes for LIM drives. With an equivalent circuit of LIM in which four coefficients are introduced to evaluate the influence of the end-effects, the loss models of LIM and inverter are established. Based on such loss models, the LMC scheme is implemented in a secondary field orientation involving an optimal flux obtained online according to the operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boldea I, Tutelea L, Xu W, Pucci M (2018) Linear electric machines, drives and MAGLEVs: an overview. IEEE Trans Ind Electron 65(9):7504–7515

    Article  Google Scholar 

  2. Boldea I (2013) Linear electric machines, drives, and MAGLEVs handbook. CRC Press, Hoboken

    Google Scholar 

  3. Nonaka S, Higuchi T (1988) Design of single-sided linear induction motors for unban transit. IEEE Trans Veh Technol 37(3):167–173

    Article  Google Scholar 

  4. Xu W, Sun G, Wen G, Wu Z, Chu P (2012) Equivalent circuit derivation and performance analysis of a single-sided linear induction motor based on the winding function theory. IEEE Trans Veh Technol 61(4):1515–1525

    Article  Google Scholar 

  5. Xu W et al (2010) An improved equivalent circuit model of a single-sided linear induction motor. IEEE Trans Veh Technol 59(5):2277–2289

    Article  Google Scholar 

  6. Selcuk A, Kurum H (2008) Investigation of end effects in linear induction motors by using the finite-element method. IEEE Trans Magn 44(7):1791–1795

    Article  ADS  Google Scholar 

  7. Higuchi T, Nonaka S, Ando M (2001) On the design of high-efficiency linear induction motors for linear metro. Elect Eng Jpn 137(2):36–43

    Article  Google Scholar 

  8. Long X (2006) Theory and magnetic design method of linear induction motor. Science Publishing, Beijing

    Google Scholar 

  9. Cirrincione M, Accetta A, Pucci M, Vitale G (2013) MRAS speed observer for high-performance linear induction motor drives based on linear neural networks. IEEE Trans Power Electron 28(1):123–134

    Article  ADS  Google Scholar 

  10. Xu W et al (2010) Equivalent circuits for single-sided linear induction motors. IEEE Trans Ind Appl 46(6):2410–2423

    Article  Google Scholar 

  11. Hu D, Xu W, Dian R, Liu Y (2017) Improved loss model and loss minimization control strategy for linear induction machine. In: IEEE applied power electronics conference and exposition (APEC), pp 518–524

    Google Scholar 

  12. Qu Z, Ranta M, Hinkkanen M, Luomi J (2012) Loss-minimization flux level control of induction motor drives. IEEE Trans Ind Appl 48(3):952–961

    Article  Google Scholar 

  13. Hu D, Xu W, Dian R, Liu Y, Zhu J (2018) Loss minimization control of linear induction motor drive for linear metros. IEEE Trans Ind Electron 65(9):6870–6880

    Article  Google Scholar 

  14. Shiri A, Shoulaie A (2012) Design optimization and analysis of single-sided linear induction motor, considering all phenomena. IEEE Trans Energy Convers 27(2):516–525

    Article  ADS  Google Scholar 

  15. Isfahani A, Ebrahimi B, Lesani H (2008) Design optimization of a low-speed single-sided linear induction motor for improved efficiency and power factor. IEEE Trans Magn 44(2):266–272

    Article  ADS  Google Scholar 

  16. Bazghaleh A, Naghashan M, Meshkatoddini M (2010) Optimum design of single-sided linear induction motors for improved motor performance. IEEE Trans Magn 46(11):3939–3947

    Article  ADS  Google Scholar 

  17. Fernandez-Bernal F, Garcia-Cerrada A, Faure R (2000) Model-based loss minimization for dc and ac vector-controlled motors including core saturation. IEEE Trans Ind Appl 36(3):755–763

    Article  Google Scholar 

  18. Garcia G, Luis J, Stephan R, Watanabe E (1994) An efficient controller for an adjustable speed induction motor drive. IEEE Trans Ind Electron 41(5):535–539

    Article  Google Scholar 

  19. Lim S, Nam K (2004) Loss-minimising control scheme for induction motors. Proc Inst Elect Eng 151(4):385–397

    Google Scholar 

  20. Bazzi A, Krein P (2010) Review of methods for real-time loss minimization in induction machines. IEEE Trans Ind Appl 46(6):2319–2328

    Article  Google Scholar 

  21. Cleland J, McCormick V, Turner M (1995) Design of an efficiency optimization controller for inverter-fed AC induction motors. In: IEEE IAS annual meeting, pp 16–21

    Google Scholar 

  22. Ohnishi T, Miyazaki H, Okitsu H (1988) High efficiency drive of an induction motor by means of V/F ratio control. In: IEEE annual conference of industrial electronics society, pp 780–785

    Google Scholar 

  23. Kirschen D, Novotny D, Lipo T (1985) On-line efficiency optimization of a variable frequency induction motor drive. IEEE Trans Ind Appl 21(3):610–616

    Article  Google Scholar 

  24. Kim G, Ha I, Ko M (1992) Control of induction motors for both high dynamic performance and high power efficiency. IEEE Trans Ind Electron 39(4):323–333

    Article  Google Scholar 

  25. Ta C, Hori Y (2001) Convergence improvement of efficiency-optimization control of induction motor drives. IEEE Trans Ind Appl 37(6):1746–1753

    Article  Google Scholar 

  26. Chakraborty C, Ta C, Uchida T, Hori Y (2002) Fast search controllers for efficiency maximization of induction motor drives based on dc link power measurement. In: Power conversion conference, pp 402–408

    Google Scholar 

  27. Souza D, Filho W, Sousa G (2007) Adaptive fuzzy controller for efficiency optimization of induction motors. IEEE Trans Ind Electron 54(4):2157–2164

    Article  Google Scholar 

  28. Sousa G, Bose B, Cleland J (1995) Fuzzy logic based on-line efficiency optimization control of an indirect vector-controlled induction motor drive. IEEE Trans Ind Electron 42(2):192–198

    Article  Google Scholar 

  29. Ramesh L, Chowdhury S, Chowdhury S, Saha A, Song Y (2006) Efficiency optimization of induction motor using a fuzzy logic based optimum flux search controller. In: International conference on power electronic, drives and energy systems, pp 1–6

    Google Scholar 

  30. Yatim A, Utomo W (2005) Neuro-fuzzy on-line optimal energy control for variable speed compressor motor drive system. In: International conference on power electronics and drives systems, pp 776–780

    Google Scholar 

  31. Xu W, Lorenz R (2014) Dynamic loss minimization using improved deadbeat-direct torque and flux control for interior permanent-magnet synchronous machines. IEEE Trans Ind Appl 50(2):1053–1065

    Article  Google Scholar 

  32. Xie E et al (2016) Dynamic loss minimization of finite control set-model predictive torque control for electric drive system. IEEE Trans Power Electron 31(1):849–860

    Article  ADS  MathSciNet  Google Scholar 

  33. Piazza M, Luna M, Pucci M (2017) Electrical loss minimization technique for wind generators based on a comprehensive dynamic modeling of induction machines. IEEE Trans Ind Appl 53(4):3696–3706

    Article  Google Scholar 

  34. Stumper J-F, Dotlinger A, Kennel R (2013) Loss minimization of induction machines in dynamic operation. IEEE Trans Energy Conver 28(3):726–735

    Article  ADS  Google Scholar 

  35. Uddin M, Nam S (2008) New online loss-minimization-based control of an induction motor drive. IEEE Trans Power Electron 23(3):926–933

    Article  ADS  Google Scholar 

  36. Vukosavic S, Levi E (2003) A method for transient torque response improvement in optimum efficiency induction motor drives. IEEE Trans Energy Convers 18(4):484–493

    Article  ADS  Google Scholar 

  37. Wallace I, Novotny D, Lorenz R, Divan D (1994) Increasing the dynamic torque per ampere capability in saturated induction machines. IEEE Trans Ind Appl 30(1):146–153

    Article  Google Scholar 

  38. Kirschen D, Novotny D, Lipo T (1987) Optimal efficiency control of an induction motor drive. IEEE Trans Energy Convers 2(1):70–76

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, D., Xu, W. (2019). Loss Minimization Control Scheme for LIM. In: Xu, W., Islam, M., Pucci, M. (eds) Advanced Linear Machines and Drive Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-9616-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9616-8_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9615-1

  • Online ISBN: 978-981-13-9616-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics