Skip to main content

Bioactive Potentials of Novel Molecules from the Endophytes of Medicinal Plants

  • Chapter
  • First Online:
Medically Important Plant Biomes: Source of Secondary Metabolites

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 15))

Abstract

Microbial endophytes have a long-standing association with numerous plant species. A closer look into their diversity indicates the existence of novel species from biologically diverse regions on the earth, especially the tropics. The novelty is related to their ability to produce diverse chemical structures with reliable bioactive potentials, which has resulted in the addition of new compounds to the unending list of natural products. Hyphenated techniques have fastened the cumbersome screening of crude extracts with reliable bioassays resulting in the elucidation of novel compounds or molecules of interest. Biotechnological approaches are of added advantage in the production of such compounds with remarkable bioactivities. This chapter highlights the fungi and actinomycetes as endophytes from the medicinal and pharmaceutical plants of relevance, host-related metabolites, novel bioactive metabolites of endophytes, and approaches for the augmentation of metabolites and a special mention of the metabolites by Pestalotiopsis species. Therefore, endophytes are microbial chemical factories more suited for the production of novel metabolites with therapeutic potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelin E, Servy C, Cortial S et al (2011) Isolation, structure elucidation and biological activity of metabolites from Sch-642305-producing endophytic fungus Phomopsis sp. CMU-LMA Phytochem 72:2406–2412

    Article  CAS  Google Scholar 

  • Adelin E, Servy C, Martin M et al (2014) Bicyclic and tetracyclic diterpenes from a Trichoderma symbiont of Taxus baccata. Phytochemistry 97:55–61

    Article  PubMed  CAS  Google Scholar 

  • Agnolet S, Wiese S, Verpoorte R (2012) Comprehensive analysis of commercial willow bark extracts by new technology platform: combined use of metabolomics, high-performance liquid chromatography-solid-phase extraction-nuclear magnetic resonance spectroscopy and high-resolution radical scavenging assay. J Chromatogr A 1262:130–137

    Article  PubMed  CAS  Google Scholar 

  • Akshatha VJ, Nalini MS, D’Souza C et al (2014) Streptomycete endophytes from anti-diabetic medicinal plants of the Western Ghats inhibit alpha-amylase and promote glucose uptake. Lett Appl Microbiol 58:433–439

    Article  PubMed  CAS  Google Scholar 

  • Aly AH, Edrada-Ebel R, Indriani ID et al (2008) Cytotoxic metabolites from the fungal endophyte Alternaria sp. and their subsequent detection in its host plant Polygonum senegalense. J Nat Prod 71:972–980

    Article  PubMed  CAS  Google Scholar 

  • Alzheimer’s Disease International (2015) World Alzheimer Report 2015: The Global Impact of Dementia. http://www.alz.co.uk/research/world-report-2015

  • Ardalani H, Avan A, Ghayour-Mobarhan M (2017) Podophyllotoxin: a novel potential natural anticancer agent. Avicenna J Phytomed 7(4):285–294

    PubMed  PubMed Central  CAS  Google Scholar 

  • Asai T, Luo D, Yamashita K (2013) Structures and biomimetic synthesis of novel alpha-pyrone polyketides of an endophytic Penicillium sp. in Catharanthus roseus. Org Lett 15:1020–1023

    Article  PubMed  CAS  Google Scholar 

  • Ayob FW, Simarani K, Abidin NZ et al (2017) First report on a novel Nigrospora sphaerica isolated from Catharanthus roseus plant with anticarcinogenic properties. Microbial Biotech 10(4):926–932

    Article  CAS  Google Scholar 

  • Bacon CW, White JF (2000) Microbial endophytes. Marcel Dekker, New York, pp 341–388

    Google Scholar 

  • Bascom-Slack CA, Ma C, Moore E, Babbs B et al (2009) Multiple, novel biologically active endophytic actinomycetes isolated from upper Amazonian rainforests. Microb Ecol 58(2):374–383

    Article  PubMed  Google Scholar 

  • Bhalkar BN, Bedekar PA, Patil SM et al (2015) Production of camptothecin using whey by an endophytic fungus: standardization using response surface methodology. RSC Adv 5:62828–62835

    Article  CAS  Google Scholar 

  • Bombardelli E, Morazzoni P (1995) Hypericum perforatum. Fitoterapia 66:43–68

    CAS  Google Scholar 

  • Boonyaketgoson S, Trisuwan K, Bussaban B et al (2015) Isochromanone derivatives from the endophytic fungus Fusarium sp. PDB51F5. Tetrahedron Lett 56(36–2):5076–5078

    Article  CAS  Google Scholar 

  • Borges KB, Borges WDS, Dur’an-Patr R et al (2009) Stereoselective biotransformations using fungi as biocatalysts. Tetrahedron Asymmetry 20(4):385–397

    Article  CAS  Google Scholar 

  • Boyer N, Kim J, Morrison KC et al (2013) Synthesis and anticancer activity of epipolythiodiketopiperazine alkaloids. Chem Sci 4(4):1646–1637

    Article  PubMed  CAS  Google Scholar 

  • Brady SF, Wagenaar MM, Singh MP et al (2000a) The cytosporones, new octaketide antibiotics isolated from an endophytic fungus. Org Lett 2(25):4043–4046

    Article  PubMed  CAS  Google Scholar 

  • Brady SF, Singh MP, Janso JE (2000b) Cytoskyrins A and B, new BIA active bisanthraquinones isolated from an endophytic fungus. Org Lett 2:4047–4049

    Article  PubMed  CAS  Google Scholar 

  • Brady SF, Singh MP, Janso JE et al (2000c) Guanacastepene, a fungal-derived diterpene antibiotic with a new carbon skeleton. J Am Chem Soc 122:2116–2117

    Article  CAS  Google Scholar 

  • Brady SF, Bondi SM, Clardy J (2001) The Guanacastepenes: a highly diverse family of secondary metabolites produced by an endophytic fungus. J Am ChemSoc 123:9900–9901

    Article  CAS  Google Scholar 

  • Buée M, Reich M, Murat C et al (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    Article  PubMed  CAS  Google Scholar 

  • Bungihan ME, Tan MA, Kitajima M et al (2011) Bioactive metabolites of Diaporthe sp. P133, an endophytic fungus isolated from Pandanus amaryllifolius. J Nat Med 65:606–609

    Article  PubMed  CAS  Google Scholar 

  • Cao S, Clardy J (2011) New naphthoquinones and a new d-lactone produced by endophytic fungi from Costa Rica. Tetrahedron Lett 52:2206–2208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao S, Ross L, Tamayo G et al (2010) Asterogynins: secondary metabolites from a Costa Rican endophytic fungus. Org Lett 12(20):4661–4663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao P, Yang J, Miao CP et al (2015) New duclauxamide from Penicillium manginii YIM PH30375 and structure revision of the duclauxin family. Org Lett 17(5):1146–1149

    Article  PubMed  CAS  Google Scholar 

  • Carroll GC (1986) The biology of endophytism in plants with particular reference to woody perennials. In: Fokkema NJ, van den Heuvel J (eds) Microbiology of the phyllosphere. Cambridge University Press, Cambridge, pp 205–222

    Google Scholar 

  • Caruso M, Colombo AL, Fideli L et al (2000) Isolation of endophytic fungi and actinomycetes taxane producers. Ann Microbiol 50:3–13

    CAS  Google Scholar 

  • Castillo UF, Strobel GA, Ford EJ et al (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 148:2675–2685

    Article  PubMed  CAS  Google Scholar 

  • Castillo UF, Harper JK, Strobel GA et al (2003) Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Microbiol Lett 234:183–190

    Article  CAS  Google Scholar 

  • Castillo UF, Strobel GA, Mullenberg K et al (2006) Munumbicins E-4 and E-5: novel broad-spectrumantibiotics from Streptomyces NRRL 3052. FEMS Microbiol Lett 255:296–300

    Article  PubMed  CAS  Google Scholar 

  • Chun-Yan SU, Ming QL, Rahman K et al (2015) Salvia miltiorrhiza: traditional medicinal uses, Chemistry and Pharmacology. Chin J Nat Med 13:163–182

    Google Scholar 

  • Clay K (1988) Clavicipitaceous fungal endophytes of grasses: coevolution and the change from parasitism to mutualism. In: Pirozynski KA, Hawksworth DL (eds) Coevolution of fungi with plants and animals. Academic, London, pp 79–105

    Google Scholar 

  • Cummings JL (2004) Alzheimer’s disease. N Engl J Med 351:56–67

    Article  PubMed  CAS  Google Scholar 

  • Daisy B, Strobel GA, Castillo U et al (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148:3737–3741

    Article  PubMed  CAS  Google Scholar 

  • DarkinRattray SJ, Gurnet AM, Myers RW et al (1996) Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc Natl Acad Sci U S A 93:13143–13147

    Article  CAS  Google Scholar 

  • Davis RA, Andjic V, Kotiw M et al (2005) Phomoxins B and C: polyketides from an endophytic fungus of the genus Eupenicillium. Phytochemistry 66:2771–2775

    Article  PubMed  CAS  Google Scholar 

  • Davis RA, Carroll AR, Andrews KT et al. (2010) Pestalactams A-C: Novel caprolactams from the endophytic fungus Pestalotiopsis sp. Org Biomol Chem 8:1785-1790 

    Article  CAS  Google Scholar 

  • Debbab A, Aly AH, Edrada-Ebel RA et al (2009) Bioactive metabolites from the endophytic fungus Stemphylium globuliferum isolated from Mentha pulegium. J Nat Prod 72:626–631

    Article  PubMed  CAS  Google Scholar 

  • Debbab A, Aly AH, Edrada-Ebel R et al (2012) New anthracene derivatives – structure elucidation and antimicrobial activity. Eur J Org Chem 7:1351–1359

    Article  CAS  Google Scholar 

  • Demain AL (2000) Microbial natural products: a past with a future. In: Wrigley SK, Hayes MA, Thomas R et al (eds) Biodiversity: new leads for pharmaceutical and agrochemical industries. The Royal Society of Chemistry, Cambridge, pp 3–16

    Google Scholar 

  • Dhingra AK, Chopra B, Dass R et al (2015) Antiinflammatory and antiallergy. Agents Med Chem 14(2):81–97

    CAS  Google Scholar 

  • Ding G, Song YC, Chen JR et al (2006) Chaetoglobosin U, a cytochalasan alkaloid from endophytic Chaetomium globosum IFB-E019. J Nat Prod 69(2):302–304

    Article  PubMed  CAS  Google Scholar 

  • Ding G, Liu S, Guo L et al (2008) Antifungal metabolites from the plant endophytic fungus Pestalotiopsis foedan. J Nat Prod 71(4):615–618. https://doi.org/10.1021/np070590f

    Article  PubMed  CAS  Google Scholar 

  • Ding G, Wang H, Li L, Chen AJ, Lin C, Chen H, Zhang H, Liu X, Zou Z (2012) Trichoderones a and B: two Pentacyclic Cytochalasans from the plant Endophytic fungus Trichoderma gamsii. Eur J Org Chem 13:2516–2519

    Article  CAS  Google Scholar 

  • Ding G, Wang H, Li L, Song B, Chen H, Zhang H, Liu X, Zou Z (2013) Trichodermone, a Spiro-cytochalasan with a tetracyclic nucleus (7/5/6/5) skeleton from the plant Endophytic fungus. J Nat Prod 77(1):164–167

    Article  CAS  Google Scholar 

  • Ding H, Yang Z, Sheng L (2015) Secovironolide, a novel furanosteroid scaffold with a five-membered B ring from the endophytic fungus Talaromyces wortmannii LGT-4. Tetrahedron Lett 56:6754–6757

    Article  CAS  Google Scholar 

  • Dreyfuss MM, Chapela IH (1994) Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. In: Gullo VP (ed) The discovery of natural products with therapeutic potential. Butterworth-Heinemann, London, pp 49–80

    Chapter  Google Scholar 

  • Duge de Bernonville T, Clastre M, Besseau S et al (2015) Phytochemical genomics of the Madagascar periwinkle: Unravelling the last twists of the alkaloid engine. Phytochemistry 113:9–23

    Article  PubMed  CAS  Google Scholar 

  • Eyberger L, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produces podophyllotoxin. J Nat Prod 69:1121–1124

    Article  PubMed  CAS  Google Scholar 

  • Ezra D, Castillo UF, Strobel GA et al (2004) Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology 150:785–793

    Article  CAS  PubMed  Google Scholar 

  • Farner CM, Zazopoulos E (2005) Improving the discovery from microorganisms. In: Zhang L, Demain DL (eds) Natural products: drug discovery and therapeutic medicine. Humana, Totowa, p 95

    Chapter  Google Scholar 

  • Findlay JA, Buthelezi S, Li G et al (1997) Insect toxins from an endophytic fungus from wintergreen. J Nat Prod 60:1214–1215

    Article  CAS  Google Scholar 

  • Fu GC, Yang ZD, Zhou SYG et al (2016) Wortmannines A–C, three novel wortmannin derivatives with an unusual five-membered B ring from the endophytic fungus Talaromyces wortmannii LGT-4. Tetrahedron Lett 57:4608–4611

    Article  CAS  Google Scholar 

  • Gangadevi V, Muthumary J (2009) Taxol production by Pestalotiopsis terminaliae, an endophytic fungus of Terminalia arjuna (arjun tree). Biotechnol Appl Biochem 52:9–15. https://doi.org/10.1042/BA20070243

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Li G, Lou H (2018) Structural diversity and biological activities of novel secondary metabolites from endophytes. Molecules 23:646. https://doi.org/10.3390/molecules23030646

    Article  PubMed Central  CAS  Google Scholar 

  • Ge HM, Peng H, Guo ZK et al (2010) Bioactive alkaloids from the plant endophytic fungus Aspergillus terreus. Planta Med 76:822–824

    Article  PubMed  CAS  Google Scholar 

  • Ge HM, Zhang WY, Ding G, Saparpakorn P, Song YC, Hannongbua S, Tan RX (2008) Chaetoglobins A and B, two unusual alkaloids from endophytic Chaetomium globosum culture. Chem Commun 45:5978

    Google Scholar 

  • Golinska P, Wypij M, Agarkar G et al (2015) Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Leewenhoek 108:267–289

    Article  Google Scholar 

  • Grosso C, Jäger AK, Staerk D (2013) Coupling of a high-resolution monoamine oxidase-A inhibitor assay and HPLC-SPE-NMR for advanced bioactivity profiling of plant extracts. Phytochem Anal 24:141–147

    Article  PubMed  CAS  Google Scholar 

  • Gu W, Ge HM, Song YC et al (2007) Cytotoxic Benzo[j]fluoranthene metabolites from Hypoxylon truncatum IFB-18, an endophyte of Artemisia annua. J Nat Prod 70:114–117

    Article  PubMed  CAS  Google Scholar 

  • Guo B, Dai J, Ng S et al (2000) Cytonic acids A and B: novel tridepside inhibitors of hCMV protease from the endophytic fungus Cytonaema species. J Nat Prod 63:602–604

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd edn. Clarendon, Oxford

    Google Scholar 

  • Harper JK, Arif AM, Ford EJ et al (2003) Pestacin: a 1,3- dihydroisobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotics activities. Tetrahedron 59:2471–2476

    Article  CAS  Google Scholar 

  • Hartzell H (1991) The yew tree. Hogolosi, Orlando

    Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 108:1422–1432

    Article  Google Scholar 

  • Hillhouse TM, Porter JH (2015) A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp Clin Psychopharmacol 23(1):1–21. https://doi.org/10.1037/a0038550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horn WS, Simmonds MSJ, Schwartz RE et al (1995) Phomopsichalasin, a novel antimicrobial agent from an endophytic Phomopsis sp. Tetrahedron 14:3969–3978

    Article  Google Scholar 

  • Huang XZ, Zhu Y, Guan XL et al (2012) A novel antioxidant isobenzofuranone derivative from fungus Cephalosporium sp. AL031. Molecules 17:4219–4224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang HW, Oldfield S, Qian H (2015) Global significance of plant diversity in China. In: Hong DY, Blackmore S (eds) Plantsof China–a companion to the Flora of China. Science Press, Beijing, pp 7–34

    Google Scholar 

  • Igarashi Y, Mogi T, Yanase S et al (2009) Brartemicin, an inhibitor of tumor cell invasion from the actinomycete Nonomuraea sp. J Nat Prod 72:980–982

    Article  PubMed  CAS  Google Scholar 

  • Igarashi Y, Ogura H, Furihata K et al (2011) Maklamicin, an antibacterial polyketide from endophytic Micromonospora sp. J Nat Prod 74:670–674. https://doi.org/10.1021/np100727h

    Article  PubMed  CAS  Google Scholar 

  • Indananda C, Igarashi Y, Ikeda M et al (2013) Linfuranone A, a new polyketide from plant-derived Microbispora sp. GMKU 363. J Antibiot 66:675–677

    Article  CAS  Google Scholar 

  • Isaka M, Jaturapat A, Rukseree K et al (2001) Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. J Nat Prod 64(8):1015–1018

    Article  PubMed  CAS  Google Scholar 

  • Janso JE, Carter GT (2010) Biosynthetic potential of phylogenetically unique endophytic actinomycetes from tropical plants. Appl Environ Microbiol 76:4377–4386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaxel C, Kohn KW, Wani MC et al (1989) Structure-activity study of the actions of camptothecin derivatives on mammalian topoisomerase I: evidence for site specific receptor site and a relation to antitumor activity. Cancer Res 49:1465–1469

    PubMed  CAS  Google Scholar 

  • Jeewon R, Liew ECY, Hyde KD (2004) Phylogenetic evaluation of species nomenclature of Pestalotiopsis in relation to host association. Fungal Divers 17:39–55

    Google Scholar 

  • Jiao RH, Xu S, Liu JY et al (2006) Chaetominine, a cytotoxic alkaloid produced by endophytic Chaetomium sp. IFB-E015. Org Lett 8(25):5709–5712

    Article  PubMed  CAS  Google Scholar 

  • Kajula M, Ward JM, Turpeinen A et al (2014) Bridged Epipolythiodiketopiperazines from Penicillium raciborskii, an endophytic fungus of Rhododendron tomentosum Harmaja. J Nat Prod 79(4):685–690

    Article  CAS  Google Scholar 

  • Kaul S, Gupta S, Ahmed M et al (2012) Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev. (2012) 11:487–505. https://doi.org/10.1007/s11101-012-9260-6

    Article  CAS  Google Scholar 

  • Kesting JR, Staerk D, Tejesvi MV et al (2009) HPLC-SPE-NMR identification of a novel metabolite containing the benzo[c]oxepin skeleton from the endophytic fungus Pestalotiopsis virgatula culture. Planta Med 75(10):1104–1106. https://doi.org/10.1055/s-0029-1185951

    Article  PubMed  CAS  Google Scholar 

  • Kesting JR, Olsen L, Staerk D et al (2011) Production of unusual dispiro metabolites in Pestalotiopsis virgatula endophyte cultures: HPLC-SPE-NMR, electronic circular dichroism, and time-dependent density-functional computation study. J Nat Prod 74(10):2206–2215. https://doi.org/10.1021/np2005665

    Article  PubMed  CAS  Google Scholar 

  • Khayat TM, Ibrahim SRM, Mohamed GA et al (2019) Anti-inflammatory metabolites from endophytic fungus Fusarium sp. Phytochem Lett 29:104–109

    Article  CAS  Google Scholar 

  • Kim S, Shin D, Lee T et al (2004) Periconicins, two new fusicoccane diterpenes produced by an endophytic fungus Periconia sp. with antibacterial activity. J Nat Prod 67:448–450

    Article  PubMed  CAS  Google Scholar 

  • Kontnik R, Clardy J (2008) Codinaeopsin, an antimalarial fungal polyketide. Org Lett 10(18):4149–4151. https://doi.org/10.1021/ol801726k

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kornsakulkarn J, Dolsophon K, Boonyuen N et al (2011) Dihydronaphthalenones from endophytic fungus Fusarium sp. BCC14842. Tetrahedron 67:7540–7547

    Article  CAS  Google Scholar 

  • Kornsakulkarn J, Choowong W, Rachtawee P et al (2018) Bioactive hydroanthraquinones from endophytic fungus Nigrospora BCC 47789. Phytochem Lett 24:46–50

    Article  CAS  Google Scholar 

  • Krohn K, Biele C, Drogies KH (2002) Fusidilactones, a new group of polycyclic lactones from an endophyte, Fusidium sp. Eur J Org Chem 14:2331–2336

    Article  Google Scholar 

  • Krohn K, Kouam SF, Kuigoua GM et al (2009) Xanthones and oxepino[2, 3-b]chromones from three endophytic fungi. Chemistry 15(44):12121–12132

    Article  PubMed  CAS  Google Scholar 

  • Kuang C, Jing S-X, Liu Y, Luo S-H, Li S-H (2016) Drimane Sesquiterpenoids and Isochromone derivative from the Endophytic fungus Pestalotiopsis sp. M-23. Nat Prod Bioprospect 6(3):155–160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar DS, Lau CS, Wan JM et al (2005) Immunomodulatory compounds from Pestalotiopsis leucothës, an endophytic fungus from Tripterygium wilfordii. Life Sci 78(2):147–156

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Patil D, Rajamohanan PR (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One 8(9):e71805. https://doi.org/10.1371/journal.pone.0071805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kusari S, Lamshöft M, Zühlke S et al (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71:159–162

    Article  PubMed  CAS  Google Scholar 

  • Kusari S, Zühlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces Camptothecin and analogues. J Nat Prod 72:2–7

    Article  PubMed  CAS  Google Scholar 

  • Kusari S, Verma VC, Lamshoeft M et al (2012) Anendophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294

    Article  PubMed  CAS  Google Scholar 

  • Lee JC, Lobkovsky E, Pliam NB et al (1995a) Subglutinols A and B: immunosuppressive compounds from the endophytic fungus Fusarium subglutinans. Org Chem 60:7076–7077

    Article  CAS  Google Scholar 

  • Lee JC, Yang X, Schwartz M et al (1995b) The relationship between an endangered North American tree and an endophytic fungus. Chem Biol 2:721–727

    Article  PubMed  CAS  Google Scholar 

  • Lee JC, Strobel GA, Lobkovsky E et al (1996) Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus Pestalotiopsis microspora. J Organomet Chem 61:3232–3233

    Article  CAS  Google Scholar 

  • Lhamo S, Wang XB, Li TX (2015) Three unusual indole diketopiperazine alkaloids from a terrestrial-derived endophytic fungus, Aspergillus sp. Tetrahedron Lett 56:2823–2826

    Article  CAS  Google Scholar 

  • Li L (2000) Opportunity and challenge of Traditional Chinese Medicine in face of the entrance to WTO (World Trade Organization). Chin J Inf Tradit Chin Med 7:7–8

    Google Scholar 

  • Li JY, Strobel GA (2001) Jesterone and hydroxy-jesterone antioomycete cyclohexenone epoxides from the endophytic fungus Pestalotiopsis jesteri. Phytochemistry 57:261–265

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Strobel GA, Sidhu R et al (1996) Endophytic taxol producing fungi from bald cypress Taxodium distichum. Microbiology 142:2223–2226

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Strobel GA, Harper JK et al (2000) Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Org Lett 2:767–770

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Harper JK, Grant DM et al (2001) Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp. Phytochemistry 56:463–468

    Article  PubMed  CAS  Google Scholar 

  • Li J, Zhao GZ, Chen HH et al (2008) Antitumour and antimicrobial activities of endophytic streptomycetes from pharmaceutical plants in rainforest. Lett Appl Microbiol 47:574–580

    Article  PubMed  CAS  Google Scholar 

  • Li J, Li L, Si YK et al (2011) Virgatolides A–C, benzannulated spiroketals from the plant endophytic fungus Pestalotiopsis virgatula. Org Lett 13:2670–2673

    Article  PubMed  CAS  Google Scholar 

  • Liu Y et al (2013) Structures and absolute configurations of penicillactones A-C from an endophytic microorganism, Penicillium dangeardii Pitt. Org Lett 15(20):5206–5209

    Article  PubMed  CAS  Google Scholar 

  • Li X, Guo Z, Deng Z et al (2015) A new α-pyrone derivative from endophytic fungus Pestalotiopsis microspora. Rec Nat Prod 9(4):503–508

    CAS  Google Scholar 

  • Li CS, Ding Y, Yang B et al (2016a) Eremophilane sesquiterpenes from Hawaiian endophytic fungus Chaetoconis sp. FT087. Phytochemistry 126:41–46

    Article  PubMed  CAS  Google Scholar 

  • Li CS, Ren G, Yang BJ et al (2016b) Meroterpenoids with antiproliferative activity from a Hawaiian-plant associated fungus Peyronellaea coffeae-arabicae FT238. Org Lett 18:2335–2338

    Article  PubMed  CAS  Google Scholar 

  • Li W, Xu J, Li F et al (2016c) A new antifungal isocoumarin from the endophytic fungus Trichoderma sp. 09 of Myoporum bontioides A. Gray. Pharmacogn Mag 12(48):259–261. https://doi.org/10.4103/0973-1296.192204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Zhai X, Shu Z et al (2016d) Phoma glomerata D14: an endophytic fungus from Salvia miltiorrhiza. Curr Microbiol 73:31–37

    Article  PubMed  CAS  Google Scholar 

  • Li C, Yang B, Turkson J et al (2017) Anti-proliferative ambuic acid derivatives from Hawaiian endophytic fungus Pestalotiopsis sp. FT172. Phytochemistry 140:77–82. https://doi.org/10.1016/j.phyochem.2017.04.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li C, Sarotti AM, Yoshida W et al (2018) Two new polyketides from Hawaiian endophytic fungus Pestalotiopsis sp. FT172 Pestalotiotones A-B. Tetrahedron Lett 59(1):42–45

    Article  CAS  Google Scholar 

  • Liao G, Wu P, Xue J et al (2018) Asperimides A–D, anti-inflammatory aromatic butenolides from a tropical endophytic fungus Aspergillus terreus. Fitoterapia 131:50–54

    Article  PubMed  CAS  Google Scholar 

  • Lim W, Park J, Lee YH et al (2015) Subglutinol A, an immunosuppressive α-pyrone diterpenoid from Fusarium subglutinans, acts as an estrogen receptor antagonist. Biochem Biophys Res Commun 461(3):507–512

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, Wen J, Zhu T et al (2008) Chrysogenamide A from an endophytic fungus associated with Cistanche deserticola and its neuroprotective effect on SH-SY5Y cells. J Antibiot 61:81–85

    Article  CAS  Google Scholar 

  • Liu L, Liu SC, Jiang LH et al (2008a) Chloropupukeananin, the first chlorinated pupukeanane derivative, and its precursors from Pestalotiopsis fici. Org Lett 10:1397–1400

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Tian RR, Liu SC et al (2008b) Pestaloficiols A–E, bioactive cyclopropane derivatives from the plant endophytic fungus Pestalotiopsis fici. Bioorg Med Chem 16:6021–6026

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Liu S, Chen X et al (2009a) Pestalofones A–E, bioactive cyclohexanone derivatives from the plant endophytic fungus Pestalotiopsis fici. Bioorg Med Chem 17:606–613

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Liu S, Niu S et al (2009b) Isoprenylated chromone derivatives from the plant endophytic fungus Pestalotiopsis fici. J Nat Prod 72:1482–1486

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Jiang J, Huang R et al (2019) A new antiviral 14-nordrimane sesquiterpenoid from an endophytic fungus Phoma sp. Phytochem Lett 29:75–78

    Article  CAS  Google Scholar 

  • Lösgen S, Magull J, Schulz B et al (2008) Isofusidienols: novel chromone-3-oxepines produced by the endophytic fungus Chalara sp. Eur J Org Chem 4:698–703

    Article  CAS  Google Scholar 

  • Lu H, Zou WX, Meng JC et al (2000) New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci 151:67–73

    Article  CAS  Google Scholar 

  • Magnani RF, Rodrigues-Fo E, Daolio C et al (2003) Three highly oxygenated caryophyllene sesquiterpenes from Pestalotiopsis sp., a fungus isolated from bark of Pinus taeda. J Biosci (Z Naturforsch) 58c:319–324

    Article  Google Scholar 

  • Maha A, Rukachaisirikul V, Phongpaichit S et al (2016) Dimeric chromanone, cyclohexenone and benzamide derivatives from the endophytic fungus Xylaria sp. PSU-H182. Tetrahedron 72:2874–2879

    Article  CAS  Google Scholar 

  • Marinho AMR, Rodrigues Filho E et al (2005) Biologically active polyketides produced by Penicillium janthinellum isolated as an endophytic fungus from fruits of Melia azedarach. J Braz Chem Soc 16:280–283

    Article  Google Scholar 

  • Martinez-Luis S, Togna GD, Coley PD et al (2008) Antileishmanial constituents of the Panamanian endophytic fungus Edenia sp. J Nat Prod 71(12):2011–2014. https://doi.org/10.1021/np800472q

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsumoto A, Takahashi Y (2017) Endophytic actinomycetes: promising source of novel bioactive compounds. J Antibiot 70:514–519. https://doi.org/10.1038/ja.2017.20

    Article  CAS  Google Scholar 

  • Metwaly AM, Kadry HA, El-Hela AA et al (2014a) Nigrosphaerin A a new isochromene derivative from the endophytic fungus Nigrospora sphaerica. Phytochem Lett 7:1–5

    Article  PubMed  CAS  Google Scholar 

  • Metwaly AM, Fronczek FR, Maa G et al (2014b) Antileukemic a-pyrone derivatives from the endophytic fungus Alternaria phragmospora. Tetrahedron Lett 55:3478–3481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ming QL, Han T, Li WC et al (2012) Tanshinone IIA and tanshinone I production by Trichoderma atroviride D16, an endophytic fungus in Salvia miltiorrhiza. Phytomedicine 19:330–333

    Article  PubMed  CAS  Google Scholar 

  • Mittermeier RA, Myers N, Gill PC et al (2004) Hotspots: Earth’s richest and most endangered terrestrial ecoregions. CEMEXe, Mexico City

    Google Scholar 

  • Müller P, Döring M (2009) Isothermal DNA amplification facilitates the identification of a broad spectrum of bacteria, fungi and protozoa in Eleutherococcus sp. plant tissue cultures. Plant Cell Tissue Organ Cult 98:35–45. https://doi.org/10.1007/s11240-009-9536-8

    Article  CAS  Google Scholar 

  • Mutke J, Sommer JH, Kreft H et al (2011) Vascular plant diversity in a changing world: global centers and biome-specific patterns. In: Zachoa FE, Habel JC (eds) Biodiversity hotspots. Springer, Hiedelberg, pp 83–96

    Chapter  Google Scholar 

  • Myers N (1988) Threatened biotas: “hotspots” in tropical forests. Environmentalist 8:1–20

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858

    Article  PubMed  CAS  Google Scholar 

  • Nalini MS, Prakash HS (2017) Diversity and bioprospecting of actinomycete endophytes from the medicinal plants. Lett Appl Microbiol 64:261–270

    Article  PubMed  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661

    Article  PubMed  CAS  Google Scholar 

  • Ortega HE, Shen YY, Dyke KT (2014) Polyhydroxylated macrolide isolated from the endophytic fungus Pestalotiopsis mangiferae. Tetrahedron Lett 55:2642–2645

    Article  CAS  Google Scholar 

  • Palem PPC, Kuriakose GC, Jayabaskaran C (2015) An endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. PLoS One 10(12):e0144476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey MM, Rastogi S, Rawat AKS (2013) Indian traditional Ayurvedic system of medicine and nutritional supplementation. Evid Based Complement Alternat Med. Article ID 376327. https://doi.org/10.1155/2013/376327

    Google Scholar 

  • Passari AK, Mishra VK, Saikia R et al (2015) Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Front Microbiol 6:273. https://doi.org/10.3389/fmicb.2015.00273

    Article  PubMed  PubMed Central  Google Scholar 

  • Pei SJ, Huai HY (2015) Medicinal plants. In: Hong DY, Blackmore S (eds) Plants of China, a companion to the flora of China. Science Press, Beijing

    Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews H, Hirano SS (eds) Microbial ecology of the leaves. Springer, New York

    Google Scholar 

  • Pimentel MR, Molina G, Dion’ısio AP et al (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int. Article ID 576286. https://doi.org/10.4061/2011/576286

    Article  CAS  Google Scholar 

  • Pu X, Qu X, Chen F et al (2013) Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Appl Microbiol Biotechnol 97:9365–9375. https://doi.org/10.1007/s00253-013-5163-8

    Article  PubMed  CAS  Google Scholar 

  • Pujianto S, Lestari Y, Suwanto A et al (2012) Alpha-glucosidase inhibitor activity and characterization of endophytic actinomycetes isolated from some Indonesian diabetic medicinal plants. Int J Pharm Pharm Sci 4:327–333

    Google Scholar 

  • Pulici M, Sugawara F, Koshino H et al (1996a) Metabolites of endophytic fungi of Taxus brevifolia-the first highly functionalized humulane of fungal origin. J Chem Res N 8:378–379

    Google Scholar 

  • Pulici M, Sugawara F, Koshino H et al (1996b) A new isodrimeninol from Pestalotiopsis sp. J Nat Prod 59:47–48

    Article  CAS  Google Scholar 

  • Pulici M, Sugawara F, Koshino H et al (1996c) Pestalotiopsin-A and pestalotiopsin-B: new caryophyllenes from an endophytic fungus of Taxus brevifolia. J Organomet Chem 61:2122–2124

    Article  CAS  Google Scholar 

  • Puri SC, Verma V, Amna T et al (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719

    Article  PubMed  CAS  Google Scholar 

  • Puri SC, Nazir A, Chawla R et al (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122:494–510

    Article  PubMed  CAS  Google Scholar 

  • Qi C, Gao W, Wang J et al (2018) Terrusnolides A–D, new butenolides with anti-inflammatory activities from an endophytic Aspergillus from Tripterygium wilfordii. Fitoterapia 130:134–139

    Article  PubMed  CAS  Google Scholar 

  • Qin S, Krohn K, Flörke U et al (2009a) Two new Fusidilactones from the fungal endophyte Fusidium sp. Eur J Org Chem:3279–3284. https://doi.org/10.1002/ejoc.200900152

    Article  CAS  Google Scholar 

  • Qin S, Li J, Chen HH et al (2009b) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 75:6176–6186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin S, Xing K, Jiang J-H, Xu L-H, Li W-J (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89(3):457–473

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Chen HH, Zhao G et al (2012) Abundant and diverse endophytic actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods. Environ Microbiol Rep 4:522–531

    Article  PubMed  Google Scholar 

  • Raj N (1993) Coelomycetous anamorphs with appendage bearing conidia. Edward Brothers, Ann Harbor

    Google Scholar 

  • Ramos AC, Peláez R, López JL et al (2001) Heterolignanolides Furo-and thieno-analogues of podophyllotoxin and thuriferic acid. Tetrahedron 57:3963–3977

    Article  CAS  Google Scholar 

  • Rehman S, Shawl AS, Kour A et al (2008) An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Appl Biochem Microbiol 44:203–209. https://doi.org/10.1134/s0003683808020130

    Article  CAS  Google Scholar 

  • Remali J, Sarmin NIM, Ng CL et al (2017) Genomic characterization of a new endophytic Streptomyces kebangsaanensis identifies biosynthetic pathway gene clusters for novel phenazine antibiotic production. Peer J 5:e-3738. https://doi.org/10.7717/peerj.3738

    Article  CAS  Google Scholar 

  • Ren Y, Strobel GA, Graff JC et al (2008) Colutellin A, an immunosuppressive peptide from Colletotrichum dematium. Microbiology 154:1973–1979

    Article  PubMed  CAS  Google Scholar 

  • Rukachaisirikul V, Sommart U, Phongpaichit S et al (2008) Metabolites from the endophytic fungus Phomopsis sp. PSU-D15. Phytochemistry 69:783–787

    Article  PubMed  CAS  Google Scholar 

  • Saetang P, Rukachaisirikul V, Phongpaichit S et al (2017) Depsidones and an α-pyrone derivative from Simplicillium sp. PSU-H41, an endophytic fungus from Hevea brasiliensis leaf. Phytochemistry 143:115–123

    Article  PubMed  CAS  Google Scholar 

  • Saito H (2000) Regulation of herbal medicines in Japan. Pharmacol Regul 41:515–519

    Article  CAS  Google Scholar 

  • Saleem M, Hussain H, Ahmed I et al (2011) Viburspiran, an antifungal member of the octadride class of maleic anhydride natural products. Eur J Org Chem:808–812. https://doi.org/10.1002/ejoc.201001324

    Article  CAS  Google Scholar 

  • Saleem M, Riaz N, Tousif MI et al (2013) Cryptosporioptide: a bioactive polyketide produced by an endophytic fungus Cryptosporiopsis sp. Phytochemistry 93:199–202. https://doi.org/10.1016/j.phytochem.2013.03.018

    Article  PubMed  CAS  Google Scholar 

  • Salituro GM, Pelaez F, Zhang BB (2001) Discovery of a small molecule insulin receptor activator. Recent Prog Horm Res 56:107–126

    Article  PubMed  CAS  Google Scholar 

  • Sang XN, Chen SF, Tang MX et al (2017) α-Pyrone derivatives with cytotoxic activities, from the endophytic fungus Phoma sp. YN02-P-3. Bioorg Med Chem Lett 27(16):3723–3725. https://doi.org/10.1016/j.bmcl.2017.06.079

    Article  PubMed  CAS  Google Scholar 

  • Sappapan R, Sommit D, Ngamrojanavanich N et al (2008) 11-Hyroxymonocerin from the plant endophytic fungus Exserohilum rostratum. J Nat Prod 71(9):1657–1659

    Article  PubMed  CAS  Google Scholar 

  • Sarker SD, Nahar L (2012) Hyphenated techniques and their applications in natural products analysis. In: Sarker SD, Nahar L (eds) Natural products isolations: methods and protocols. Humana, pp 301–340

    Google Scholar 

  • Schiff PB, Horowitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A 77:1561–1565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt JS, Lauridsen MB, Dragsted LO et al (2012) Development of a bioassay-coupled HPLC-SPE-ttNMR platform for identification of α-glucosidase inhibitors in apple peel (Malus × domestica Borkh.). Food Chem 135:1692–1699

    Article  PubMed  CAS  Google Scholar 

  • Schmidt P-A, Bálint M, Greshake B et al (2013) Illumina metabarcoding of a soil fungal community. Soil Biol Biochem 65:128–132

    Article  CAS  Google Scholar 

  • Schmit JP, Mueller GM (2007) An estimate of the lower limit of global fungal diversity. Biodivers Conserv 16:99–111

    Article  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Heidelberg, pp 1–13

    Chapter  Google Scholar 

  • Singh MP, Janso JE, Brady SF (2007) Cytoskyrins and cytosporones produced by Cytospora sp. CR200: taxonomy, fermentation and biological activities. Mar Drugs 5(3):71–84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sommart U, Rukachaisirikul V, Tadpetch K et al (2012) Modiolin and phthalide derivatives from the endophytic fungus Microsphaeropsis arundinis PSU-G18. Tetrahedron 68:10005–10010

    Article  CAS  Google Scholar 

  • Staerk D, Kesting J, Sairafianpour M (2009) Accelerated dereplication of crude extracts using HPLC-PDA-MS-SPE-NMR: quinolone alkaloids of Haplophyllum acutifolium. Phytochemistry 70:1055–1061

    Article  PubMed  CAS  Google Scholar 

  • Stierle A, Strobel GA, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    Article  PubMed  CAS  Google Scholar 

  • Stierle A, Stierle D, Strobel G et al (1994) Bioactive metabolites of the endophytic fungi of Pacific yew, Taxus brevfolia. In: Georg GI, Chen TT, Ojima I et al (eds) Taxane anticancer agents, basic science Czlrrent Statzts, American Chemical Society symposium series, no. 583, Washington, DC, pp 81–97

    Google Scholar 

  • Strobel GA, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strobel G, Yang X, Sears J et al (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallichiana. Microbiology 142:435–440. https://doi.org/10.1099/13500872-142-2-435

    Article  PubMed  CAS  Google Scholar 

  • Strobel GA, Hess WM, Li JY et al (1997) Pestalotiopsis guepinii, a taxol producing endophyte of the Wollemi pine, Wollemia nobilis. Aust J Bot 45:1073–1082. https://doi.org/10.1071/bt96094

    Article  CAS  Google Scholar 

  • Strobel GA, Miller RV, Miller C et al (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145:1919–1926

    Article  PubMed  CAS  Google Scholar 

  • Strobel G, Ford E, Worapong J et al (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60(2):179–183

    Article  PubMed  CAS  Google Scholar 

  • Strobel G, Daisy B, Castillo U (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268. https://doi.org/10.1021/np030397v

    Article  PubMed  CAS  Google Scholar 

  • Subban K, Singh S, Subramani R et al (2017) Fungal 7-epi-10-deacetyltaxol produced by an endophytic Pestalotiopsis microspora induces apoptosis in human hepatocellular carcinoma cell line (HepG2). BMC Complement Altern Med 17:504. https://doi.org/10.1186/s12906-017-1993-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun W, Zhu H, Zhang T et al (2018) Two new alkaloids from Fusarium tricinctum SYPF 7082, an endophyte from the root of Panax notoginseng. Nat Prod Bioprosp 8(5):391–396

    Article  CAS  Google Scholar 

  • Taechowisan T, Chanaphat S, Ruensamran W et al (2014) Antibacterial activity of new flavonoids from Streptomyces sp. BT01; an endophyte in Boesenbergia rotunda (L.). Mansf J App Pharm Sci 4(4):008–013

    CAS  Google Scholar 

  • Talontsi FM, Melib CD, Laatsch H et al (2013) Depsidones from an endophytic fungus Chaetomium sp. associated with Zanthoxylum leprieurii. Z Naturforsch 68b:1259–1264. https://doi.org/10.5560/znb.2013-3168

    Article  Google Scholar 

  • Taylor DL, Sinsabaugh RL (2014) The soil fungi: occurrence phylogeny and ecology. In: Paul EA (ed) Soil microbiology ecology and biochemistry, 4th edn. Academic, Burlington, p 77

    Google Scholar 

  • Tejesvi MV, Kini KR, Prakash HS et al (2007) Genetic diversity and antifungal activity of species of Pestalotiopsis isolated as endophytes from medicinal plants. Fungal Divers 24:37–54

    Google Scholar 

  • Teponno RB, Noumeur SR, Helaly SE et al (2017) Furanones and anthranilic acid derivatives from the endophytic fungus Dendrothyrium variisporum. Molecules 9 22(10):E1674. https://doi.org/10.3390/molecules22101674

    Article  PubMed  CAS  Google Scholar 

  • Trémouillaux-Guiller J, Rohr T, Rohr R et al (2002) Discovery of an endophytic alga in Ginkgo biloba. Am J Bot 89:727–733

    Article  PubMed  Google Scholar 

  • Van der Sar SA, Blunt JW, Munro MH (2006) Spiro-mamakone A: a unique relative of the spirobisnaphthalene class of compounds. Org Lett 8:2059–2061

    Article  PubMed  CAS  Google Scholar 

  • Veitch GE, Pinto A, Boyer A et al (2008) Synthesis of natural products from the Indian neem tree Azadirachta indica. Org Lett 10(4):569–572

    Article  PubMed  CAS  Google Scholar 

  • Venieraki A, Dimou M, Katinakis P (2017) Endophytic fungi residing in medicinal plants have the ability to produce the same or similar pharmacologically active secondary metabolites as their hosts. Helln Plant Prot J 10:51–66

    Google Scholar 

  • Verza M, Arakawa NS, Lopes NP et al (2009) Biotransformation of a tetrahydrofuran lignan by the endophytic fungus Phomopsis sp. J Braz Chem Soc 20(1):195–200

    Article  CAS  Google Scholar 

  • Vieira FCS, Nahas E (2005) Comparison of microbial numbers in soils by using various culture media and temperatures. Microbiol Res 160:197–202

    Article  PubMed  CAS  Google Scholar 

  • Vu HT, Nguyen DT, Nguyen HQ et al (2018) Antimicrobial and cytotoxic properties of bioactive metabolites produced by Streptomyces cavourensis YBQ59 isolated from Cinnamomum cassia Prels in Yen Bai province of Vietnam. Curr Microbiol 75:1247–1255 https://doi.org/10.1007/s00284-018-1517-x

    Article  PubMed  CAS  Google Scholar 

  • Wagenaar MM, Clardy J (2001) Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis longicolla isolated from an endangered mint. J Nat Prod 64(8):1006–1009

    Article  PubMed  CAS  Google Scholar 

  • Wagenaar MM, Corwin J, Strobel G et al (2000) Three new cytochalasins produced by an endophytic fungus in the genus Rhinocladiella. J Nat Prod 63(12):1692–1695

    Article  PubMed  CAS  Google Scholar 

  • Wall ME, Wani MC, Cook CE et al (1966) Plant antitumor agents I. The isolation and structure of Camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88(16):3888–3890. https://doi.org/10.1021/ja00968a057

    Article  CAS  Google Scholar 

  • Wang JT, Zhang PL, Liu JS (2018) Aspergilates A to E, second metabolites from Aspergillus sp. isolated from Paeonia ostii. Fitoterapia 131:204–208

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Zheng M, Tao F et al (2019) Cytotoxic polyketides from endophytic fungus Phoma bellidis harbored in Tricyrtis maculata. Phytochem Lett 29:41–46

    Article  CAS  Google Scholar 

  • Wani MC, Taylor HL, Wall ME et al (1971) Plant antitumor agents VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327

    Article  PubMed  CAS  Google Scholar 

  • Weber D, Sterner O, Anke T et al (2004) Phomol, new antiinflammatory metabolite from an endophyte of the medicinal plant, Erythrina crista-galli. J Antibiot 57:559–563

    Article  CAS  Google Scholar 

  • Wen H, Liu X, Zhang Q et al (2018) Three new indole diketopiperazine alkaloids from Aspergillus ochraceus. Chem Biodivers 15(4):e1700550. https://doi.org/10.1002/cbdv.201700550

    Article  PubMed  CAS  Google Scholar 

  • Willis KJ (ed) (2017) State of the world’s plants 2017. Report. Royal Botanic Gardens, Kew, London

    Google Scholar 

  • Wu N, Ong Y, Fu YJ et al (2011) In vitro antioxidant properties, DNA damage protective activity, and xanthine oxidase inhibitory effect of cajaninstilbene acid, a stilbene compound derived from pigeon pea [Cajanus cajan (L.) Millsp.] leaves. J Agric Food Chem 59:437–443

    Article  PubMed  CAS  Google Scholar 

  • Wubshet SG, Nyberg NT, Tejesvi MV et al (2013) Targeting high-performance liquid chromatography-high-resolution mass spectrometry-solid- phase extraction-nuclear magnetic resonance analysis with high resolution radical scavenging profiles-bioactive secondary metabolites from the endophytic fungus Penicillium namyslowskii. J Chromatogr A 1302:34–39

    Article  PubMed  CAS  Google Scholar 

  • Xiao J, Lin L, Hu J et al (2017) Highly oxygenated caryophyllene-type and drimane-type sesquiterpenes from Pestalotiopsis adusta, an endophytic fungus of Sinopodophyllum hexandrum. RSC Adv 7(46):29071–29079

    Article  CAS  Google Scholar 

  • Xiao J, Hu J, Sun H et al (2018) Sinopestalotiollides A–D, cytotoxic diphenyl ether derivatives from plant endophytic fungus Pestalotiopsis palmarum. Bioorg Med Chem Lett 28(3):515–518

    Article  PubMed  CAS  Google Scholar 

  • Xin X, Chen Y, Zhang H et al (2019) Cytotoxic seco-cytochalasins from an endophytic Aspergillus sp. harbored in Pinellia ternata tubers. Fitoterapia 132:53–59

    Article  PubMed  CAS  Google Scholar 

  • Xu MF, Jia OY, Wang SJ et al (2016) A new bioactive diterpenoid from Pestalotiopsis adusta, an endophytic fungus from Clerodendrum canescens. Nat Prod Res 30(23):2642–2647. https://doi.org/10.1080/14786419.2016.1138297

    Article  PubMed  CAS  Google Scholar 

  • Yan Y, Ma Y, Yang J et al (2016) Tropolone ring construction in the biosynthesis of Rubrolone B, a cationic tropolone alkaloid from endophytic Streptomyces. Org Lett 18:1254–1257

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Zhang L, Guo B et al (2004) Preliminary study of vincristine-producing endophytic fungus isolated from leaves of Catharanthus roseus. China Trade Herb Drugs 35:79–81

    CAS  Google Scholar 

  • Yang SX, Xiao J, Laatsch H (2012) Fusarimine, a novel polyketide isoquinoline alkaloid, from the endophytic fungus Fusarium sp. LN12, isolated from Melia azedarach. Tetrahedron Lett 53:6372–6375

    Article  CAS  Google Scholar 

  • Yang X, Yang Y, Peng T et al (2013) A new cyclopeptide from endophytic Streptomyces sp. YIM 64018. Nat Prod Commun 8:1753–1754

    PubMed  CAS  Google Scholar 

  • Yang Y, Yang X, Zhang Y et al (2013) A new daidzein derivative from endophytic Streptomyces sp. YIM 65408. Nat Prod Res 27(19):1727–1731

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Huang L, Ruan X (2014) Epigenetic modifiers alter the secondary metabolite composition of a plant endophytic fungus, Pestalotiopsis crassiuscula obtained from the leaves of Fragaria chiloensis. J Asian Nat Prod Res 16(4):412–417. https://doi.org/10.1080/10286020.2014.881356

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Huang L, Li H et al (2015a) Two new compounds from the plant endophytic fungus Pestalotiopsis versicolor. J Asian Nat Prod Res 17(4):333–337. https://doi.org/10.1080/10286020.2014.961918

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Peng T, Yang Y et al (2015b) Antimicrobial and antioxidant activities of a new benzamide from endophytic Streptomyces sp. YIM 67086. Nat Prod Res 29:331–335

    Article  PubMed  CAS  Google Scholar 

  • Yuan H, Zhang X, Zhao K, Zhong K, Gu Y, Lindström K (2008) Genetic characterisation of endophytic actinobacteria isolated from the medicinal plants in Sichuan. Ann Microbiol 58(4):597–604

    Article  CAS  Google Scholar 

  • Zafari D, Leylaie S, Tajick MA (2018) Isolation and identification of vinblastine from the fungus of Chaetomium globosum Cr95 isolated from Catharanthus roseus plant. http://bjm.ui.ac.ir/article_22831_8bba73f5d4d0d402036d4698140485b7.pdf

  • Zhai X, Luo D, Li X et al (2018) Endophyte Chaetomium globosum D38 promotes bioactive constituents accumulation and root production in Salvia miltiorrhiza. Front Microbiol 8:2694

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Salituro G, Szalkowski D et al (1999) Discovery of small molecule insulin mimetic with antidiabetic activity in mice. Science 284:974–981

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Krohn K, Zia U et al (2008a) New mono- and dimeric members of the secalonic acid family: blennolides A–G isolated from the fungus Blennoria sp. Chem Eur J 14:4913–4923

    Article  PubMed  CAS  Google Scholar 

  • Zhang HW, Huang WY, Chen JR et al (2008b) Cephalosol: an antimicrobial metabolite with an unprecedented skeleton from endophytic Cephalosporium acremonium IFB-E007. Chem Eur J 14:10670–10674

    Article  PubMed  CAS  Google Scholar 

  • Zhang AH, Jiang N, Gu W et al (2010) Characterization, synthesis and self-aggregation of (−)-alternarlactam: a new fungal cytotoxin with cyclopentenone and isoquinolinone scaffolds. Chem Eur J 16:14479–14485

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Ge H, Zou JH et al (2014a) Periconianone A, a new 6/6/6 carbocyclic sesquiterpenoid from endophytic fungus Periconia sp. with neural anti-inflammatory activity. Org Lett 16:1410–1413

    Article  PubMed  CAS  Google Scholar 

  • Zhang JC, Yang YB, Zhou H et al (2014b) Medelamine C, a new omega-hydroxy alkylamine derivative from endophytic Streptomyces sp. YIM 66142. Nat Prod Commun 9(1):99–100

    PubMed  CAS  Google Scholar 

  • Zhang D, Liu J, Tao X et al (2016) Periconiasin G, a new cytochalasan with unprecedented 7/6/5 tricyclic ring system from the endophytic fungus Periconia sp. Tetrahedron Lett 57(7). https://doi.org/10.1016/j.tetlet.2016.01.030

    Article  CAS  Google Scholar 

  • Zhang SP, Huang R, Li FF et al (2016) Antiviral anthraquinones and azaphilones produced by an endophytic fungus Nigrospora sp. from Aconitum carmichaeli. Fitoterapia 112:85–89. https://doi.org/10.1016/j.fitote.2016.05.013

    Article  PubMed  CAS  Google Scholar 

  • Zhao K, Penttinen P, Guan T et al (2011) The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi plateau, China. Curr Microbiol 62:182–190. https://doi.org/10.1007/s00284-010-9685-3

    Article  PubMed  CAS  Google Scholar 

  • Zhao JT, Fu YJ, Luo M et al (2012) Endophytic fungi from pigeon pea [Cajanus cajan (L.) Millsp.] produce antioxidant Cajaninstilbene Acid. J Agric Food Chem 60:4314–4319. https://doi.org/10.1021/jf205097y

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Yang Z, Zhou S et al (2019) Wortmannine F and G, two new pyranones from Talaromyces wortmannii LGT-4, the endophytic fungus of Tripterygium wilfordii. Phytochem Lett 29:115–118

    Article  CAS  Google Scholar 

  • Zhou H, Yang Y, Zhang J et al (2013) Alkaloids from an endophytic Streptomyces sp. YIM66017. Nat Prod Commun 8:1393–1396

    PubMed  CAS  Google Scholar 

  • Zhou H, Yang Y, Peng T et al (2014) Metabolites of Streptomyces sp., an endophytic actinomycete from Alpinia oxyphylla. Nat Prod Res 28:265–267. https://doi.org/10.1080/14786419.2013.830219

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Miao MM, Du G et al (2014) Aspergillines A–E, highly oxygenated hexacyclic indole-tetrahydrofuran-tetramic acid derivatives from Aspergillus versicolor. Org Lett 16(19):5016–5019. https://doi.org/10.1021/ol502307u

    Article  PubMed  CAS  Google Scholar 

  • Zhou P, Wu Z, Tan D et al (2017) Atrichodermones A–C, three new secondary metabolites from the solid culture of an endophytic fungal strain, Trichoderma atroviride. Fitoterapia 123:18–22

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Chen J, Zhu S et al (2018) Two new compounds from Nigrospora sphaerica ZMT05, a fungus derivated from Oxya chinensis Thunber. Nat Prod Res 32(20):2375–2381. https://doi.org/10.1080/14786419.2017.1413566

    Article  PubMed  CAS  Google Scholar 

  • Zin NM, Sarmin NIM, Ghadin N, Basri DF, Sidik NM, Hess WM, Strobel GA (2007) Bioactive endophytic streptomycetes from the Malay Peninsula. FEMS Microbiol Lett 274:83–88

    Article  PubMed  CAS  Google Scholar 

  • Zou WX, Meng JC, Lu H et al (2000) Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J Nat Prod 63:1529–1530

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Dilfuza Egamberdieva, Institute of Landscape Biogeochemistry, Germany, for the invite to compile the book chapter. The timely help of research students is gratefully acknowledged.

Conflict of Interest

The authors declare that there is no conflict of interest involved in this study.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nalini, M.S., Prakash, H.S., Tejesvi, M.V. (2019). Bioactive Potentials of Novel Molecules from the Endophytes of Medicinal Plants. In: Egamberdieva, D., Tiezzi, A. (eds) Medically Important Plant Biomes: Source of Secondary Metabolites. Microorganisms for Sustainability, vol 15. Springer, Singapore. https://doi.org/10.1007/978-981-13-9566-6_13

Download citation

Publish with us

Policies and ethics