Skip to main content

Mechanistically Modeling Human Exposure to Persistent Organic Pollutants

  • Chapter
  • First Online:
A New Paradigm for Environmental Chemistry and Toxicology

Abstract

Mechanistic modeling approaches simulate human exposure by describing the processes that are responsible for delivering contaminants to the human body. Starting with environmental concentrations, emissions, or production volumes, these approaches yield metrics of internal human exposure, either for individuals or for a generic representative of a population. These models are particularly useful for quantifying exposure to persistent organic pollutants (POPs), whose long residence time in the human body implies that past exposures influence current contaminant levels and thus need to be considered. Mechanistic models allow for the reconstruction of past exposures without relying on back-extrapolations with empirical surrogate parameters; consequently, they can account for lag periods between emissions and exposure as well as for shifts in the main exposure route over time. Such shifts can occur as a result of changes in chemical use and emission scenario, exposure factors, or the environment. However, because mechanistic models require an in-depth understanding of the relevant processes including the ability to numerically parameterize them, they have so far been applied to only a limited number of data-rich POPs. When used in simulations involving a large number of hypothetical property combinations, these models facilitate the comparison of the exposure potential of different substances and the identification of thresholds that separate chemicals with different dominant exposure routes. The motivations for mechanistic modeling of exposure to POPs are manifold, and include risk assessment and management, support of biomonitoring and epidemiological investigations, and the identification of chemicals and human populations with high exposure potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcock RE, Sweetman AJ, Juan C-Y, Jones KC (2000) A generic model of human lifetime exposure to persistent organic contaminants: development and application to PCB-101. Environ Pollut 110(2):253–265

    Article  CAS  Google Scholar 

  • Armitage JM, Quinn CL, Wania F (2011) Global climate change and contaminants—an overview of opportunities and priorities for modelling the potential implications for long-term human exposure to organic compounds in the Arctic. J Environ Monit 13(6):1532–1546

    Article  CAS  Google Scholar 

  • Arnot JA, Brown TN, Wania F, Breivik K, McLachlan MS (2012) Prioritizing chemicals and data requirements for screening-level exposure and risk assessment. Environ Health Perspect 120(11):1565–1570

    Article  Google Scholar 

  • Arnot JA, Mackay D (2008) Policies for chemical hazard and risk priority setting: can persistence, bioaccumulation, toxicity, and quantity information be combined? Environ Sci Technol 42(13):4648–4654

    Article  CAS  Google Scholar 

  • Arp HPH, Morin NAO, Hale SE, Okkenhaug G, Breivik K, Sparrevik M (2017) The mass flow and proposed management of bisphenol A in selected Norwegian waste streams. Waste Manag 60:775–785

    Article  CAS  Google Scholar 

  • Bühler F, Schmid P, Schlatter C (1988) Kinetics of PCB elimination in man. Chemosphere 17(9):1717–1726

    Article  Google Scholar 

  • Bartell SM (2012) Bias in half-life estimates using log concentration regression in the presence of background exposures, and potential solutions. J Expo Sci Environ Epidemiol 22(3):299

    Article  CAS  Google Scholar 

  • Binnington MJ, Curren MS, Chan HM, Wania F (2016a) Balancing the benefits and costs of traditional food substitution by indigenous Arctic women of childbearing age: Impacts on persistent organic pollutant, mercury, and nutrient intakes. Environ Int 94:554–566

    Article  CAS  Google Scholar 

  • Binnington MJ, Curren MS, Quinn CL, Armitage JM, Arnot JA, Chan HM, Wania F (2016b) Mechanistic polychlorinated biphenyl exposure modeling of mothers in the Canadian Arctic: the challenge of reliably establishing dietary composition. Environ Int 92:256–268

    Article  CAS  Google Scholar 

  • Binnington MJ, Quinn CL, McLachlan MS, Wania F (2014) Evaluating the effectiveness of fish consumption advisories: modeling prenatal, postnatal, and childhood exposures to persistent organic pollutants. Environ Health Perspect 122(2):178–186

    Article  Google Scholar 

  • Bonhommeau S, Dubroca L, Le Pape O, Barde J, Kaplan DM, Chassot E, Nieblas A-E (2013) Eating up the world’s food web and the human trophic level. Proc Natl Acad Sci USA 110(51):20617–20620

    Article  CAS  Google Scholar 

  • Breivik K, Arnot JA, Brown TN, McLachlan MS, Wania F (2012) Screening organic chemicals in commerce for emissions in the context of environmental and human exposure. J Environ Monit 14(8):2028–2037

    Article  CAS  Google Scholar 

  • Breivik K, Czub G, McLachlan MS, Wania F (2010) Towards an understanding of the link between environmental emissions and human body burdens of PCBs using CoZMoMAN. Environ Int 36(1):85–91

    Article  CAS  Google Scholar 

  • Brown J Jr, Lawton R, Ross M, Feingold J, Wagner R, Hamilton S (1989) Persistence of PCB congeners in capacitor workers and Yusho patients. Chemosphere 19(1–6):829–834

    Article  Google Scholar 

  • Bu Q, MacLeod M, Wong F, Toms L-ML, Mueller JF, Yu G (2015) Historical intake and elimination of polychlorinated biphenyls and organochlorine pesticides by the Australian population reconstructed from biomonitoring data. Environ Int 74:82–88

    Article  CAS  Google Scholar 

  • Chen P, Luo M, Wong C, Chen C (1982) Comparative rates of elimination of some individual polychlorinated biphenyls from the blood of PCB-poisoned patients in Taiwan. Food Chem Toxicol 20(4):417–425

    Article  CAS  Google Scholar 

  • Ciffroy P, Alfonso B, Altenpohl A, Banjac Z, Bierkens J, Brochot C, Critto A, De Wilde T, Fait G, Fierens T (2016) Modelling the exposure to chemicals for risk assessment: a comprehensive library of multimedia and PBPK models for integration, prediction, uncertainty and sensitivity analysis–the MERLIN-Expo tool. Sci Total Environ 568:770–784

    Article  CAS  Google Scholar 

  • Czub G, McLachlan MS (2004a) Bioaccumulation potential of persistent organic chemicals in humans. Environ Sci Technol 38(8):2406–2412

    Article  CAS  Google Scholar 

  • Czub G, McLachlan MS (2004b) A food chain model to predict the levels of lipophilic organic contaminants in humans. Environ Toxicol Chem 23(10):2356–2366

    Article  CAS  Google Scholar 

  • Czub G, Wania F, McLachlan MS (2008) Combining long-range transport and bioaccumulation considerations to identify potential arctic contaminants. Environ Sci Technol 42(10):3704–3709

    Article  CAS  Google Scholar 

  • Dzierlenga MW, Yoon M, Wania F, Ward PL, Armitage JM, Wood SA, Clewell HJ, Longnecker MP (2019) Quantitative bias analysis of the association of type 2 diabetes mellitus with 2,2’,4,4’,5,5’-hexachlorobiphenyl (PCB-153). Environ Int 125:291–299

    Article  CAS  Google Scholar 

  • Egeghy PP, Lorber M (2011) An assessment of the exposure of Americans to perfluorooctane sulfonate: a comparison of estimated intake with values inferred from NHANES data. J Expo Sci Environ Epidemiol 21(2):150

    Article  CAS  Google Scholar 

  • Franco A, Prevedouros K, Alli R, Cousins IT (2007) Comparison and analysis of different approaches for estimating the human exposure to phthalate esters. Environ Int 33(3):283–291

    Article  CAS  Google Scholar 

  • Geusau A, Tschachler E, Meixner M, Päpke O, Stingl G, McLachlan M (2001) Cutaneous elimination of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Br J Dermatol 145(6):938–943

    Article  CAS  Google Scholar 

  • Geyer HJ, Schramm K-W, Darnerud PO, Aune M, Feicht EA, Fried KW, Henkelmann B, Lenoir D, Schmid P, McDonald TA (2004) Terminal elimination half-lives of the brominated flame retardants TBBPA, HBCD, and lower brominated PBDEs in humans. Organohalogen Compd 66(2004):3820–3825

    CAS  Google Scholar 

  • Giubilato E, Radomyski A, Critto A, Ciffroy P, Brochot C, Pizzol L, Marcomini A (2016) Modelling ecological and human exposure to POPs in Venice lagoon. Part I—application of MERLIN-Expo tool for integrated exposure assessment. Sci Total Environ 565:961–976

    Article  CAS  Google Scholar 

  • Gomis MI, Vestergren R, MacLeod M, Mueller JF, Cousins IT (2017) Historical human exposure to perfluoroalkyl acids in the United States and Australia reconstructed from biomonitoring data using population-based pharmacokinetic modelling. Environ Int 108:92–102

    Article  CAS  Google Scholar 

  • Gouin T, Wania F (2007) Time trends of Arctic contamination in relation to emission history and chemical persistence and partitioning properties. Environ Sci Technol 41(17):5986–5992

    Article  CAS  Google Scholar 

  • Gyalpo T, Fritsche L, Bouwman H, Bornman R, Scheringer M, Hungerbühler K (2012) Estimation of human body concentrations of DDT from indoor residual spraying for malaria control. Environ Pollut 169:235–241

    Article  CAS  Google Scholar 

  • Gyalpo T, Scheringer M, Hungerbühler K (2015a) Recommendations for evaluating temporal trends of persistent organic pollutants in breast milk. Environ Health Perspect 124(7):881–885

    Article  Google Scholar 

  • Gyalpo T, Toms L-M, Mueller JF, Harden FA, Scheringer M, Hungerbühler K (2015b) Insights into PBDE uptake, body burden, and elimination gained from Australian age–concentration trends observed shortly after peak exposure. Environ Health Perspect 123(10):978–984

    Article  CAS  Google Scholar 

  • Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FA (2007) Food web–specific biomagnification of persistent organic pollutants. Science 317(5835):236–239

    Article  CAS  Google Scholar 

  • Krogseth IS, Breivik K, Arnot JA, Wania F, Borgen AR, Schlabach M (2013) Evaluating the environmental fate of short-chain chlorinated paraffins (SCCPs) in the Nordic environment using a dynamic multimedia model. Environ Sci Processes Impact 15(12):2240–2251

    Article  CAS  Google Scholar 

  • Li L, Arnot JA, Wania F (2018a) Revisiting the contributions of far- and near-field routes to aggregate human exposure to polychlorinated biphenyls (PCBs). Environ Sci Technol 52(12):6974–6984

    Article  CAS  Google Scholar 

  • Li L, Arnot JA, Wania F (2018b) Towards a systematic understanding of the dynamic fate of polychlorinated biphenyls in indoor, urban and rural environments. Environ Int 117:57–68

    Article  CAS  Google Scholar 

  • Li L, Arnot JA, Wania F (2019) How are humans exposed to organic chemicals released to indoor air? Environ Sci Technol (In revision)

    Google Scholar 

  • Li L, Hoang C, Arnot JA, Wania F (Submitted) Clarifying temporal trend variability in human biomonitoring of polybrominated diphenyl ethers through mechanistic modeling

    Google Scholar 

  • Li L, Wania F (2016) Tracking chemicals in products around the world: introduction of a dynamic substance flow analysis model and application to PCBs. Environ Int 94:674–686

    Article  CAS  Google Scholar 

  • Li L, Wania F (2018) Occurrence of single-and double-peaked emission profiles of synthetic chemicals. Environ Sci Technol 52(8):4684–4693

    Article  CAS  Google Scholar 

  • Lorber M (2002) A pharmacokinetic model for estimating exposure of Americans to dioxin-like compounds in the past, present, and future. Sci Total Environ 288(1):81–95

    Article  CAS  Google Scholar 

  • Masuda Y (2001) Fate of PCDF/PCB congeners and change of clinical symptoms in patients with Yusho PCB poisoning for 30 years. Chemosphere 43(4–7):925–930

    Article  CAS  Google Scholar 

  • McLachlan MS, Czub G, MacLeod M, Arnot JA (2010) Bioaccumulation of organic contaminants in humans: a multimedia perspective and the importance of biotransformation. Environ Sci Technol 45(1):197–202

    Article  CAS  Google Scholar 

  • McLachlan MS, Undeman E, Zhao F, MacLeod M (2018) Predicting global scale exposure of humans to PCB 153 from historical emissions. Environ Sci Process Impacts 20(5):747–756

    Article  CAS  Google Scholar 

  • Moreau M, Leonard J, Phillips KA, Campbell J, Pendse SN, Nicolas C, Phillips M, Yoon M, Tan Y-M, Smith S, Pudukodu H, Isaacs K, Clewell H (2017) Using exposure prediction tools to link exposure and dosimetry for risk-based decisions: a case study with phthalates. Chemosphere 184:1194–1201

    Article  CAS  Google Scholar 

  • Nøst TH, Berg V, Hanssen L, Rylander C, Gaudreau E, Dumas P, Breivik K, Sandanger TM (2019) Time trends of persistent organic pollutants in 30 year olds sampled in 1986, 1994, 2001 and 2007 in Northern Norway: measurements, mechanistic modeling and a comparison of study designs. Environ Res 172:684–692

    Article  CAS  Google Scholar 

  • Nøst TH, Breivik K, FuskevÃ¥g O-M, Nieboer E, Odland JØ, Sandanger TM (2013) Persistent organic pollutants in Norwegian men from 1979 to 2007: intraindividual changes, age–period–cohort effects, and model predictions. Environ Health Perspect 121(11–12):1292–1298

    Article  CAS  Google Scholar 

  • Nøst TH, Breivik K, Wania F, Rylander C, Odland JØ, Sandanger TM (2015) Estimating time-varying PCB exposures using person-specific predictions to supplement measured values: a comparison of observed and predicted values in two cohorts of Norwegian women. Environ Health Perspect 124(3):299–305

    Article  CAS  Google Scholar 

  • Ng CA, Hungerbühler K (2014) Bioaccumulation of perfluorinated alkyl acids: observations and models. Environ Sci Technol 48(9):4637–4648

    Article  CAS  Google Scholar 

  • Ng CA, von Goetz N (2016) The global food system as a transport pathway for hazardous chemicals: the missing link between emissions and exposure. Environ Health Perspect 125(1):1–7

    Article  Google Scholar 

  • Oltmanns J, Licht O, Bitsch A, Bohlen M-L, Escher S, Silano V, MacLeod M, Serafimova R, Kass G, Merten C (2018) Development of a novel scoring system for identifying emerging chemical risks in the food chain. Environ Sci Processes Impact 20(2):340–353

    Article  CAS  Google Scholar 

  • Papa E, Sangion A, Arnot JA, Gramatica P (2018) Development of human biotransformation QSARs and application for PBT assessment refinement. Food Chem Toxicol 112:535–543

    Article  CAS  Google Scholar 

  • Quinn CL, Armitage JM, Breivik K, Wania F (2012) A methodology for evaluating the influence of diets and intergenerational dietary transitions on historic and future human exposure to persistent organic pollutants in the Arctic. Environ Int 49:83–91

    Article  CAS  Google Scholar 

  • Quinn CL, Wania F (2012) Understanding differences in the body burden–age relationships of bioaccumulating contaminants based on population cross sections versus individuals. Environ Health Perspect 120(4):554–559

    Article  CAS  Google Scholar 

  • Ritter R, Scheringer M, MacLeod M, Hungerbühler K (2010) Assessment of nonoccupational exposure to DDT in the tropics and the north: relevance of uptake via inhalation from indoor residual spraying. Environ Health Perspect 119(5):707–712

    Article  CAS  Google Scholar 

  • Ritter R, Scheringer M, MacLeod M, Moeckel C, Jones KC, Hungerbühler K (2011) Intrinsic human elimination half-lives of polychlorinated biphenyls derived from the temporal evolution of cross-sectional biomonitoring data from the United Kingdom. Environ Health Perspect 119(2):225–231

    Article  CAS  Google Scholar 

  • Ritter R, Scheringer M, MacLeod M, Schenker U, Hungerbühler K (2009) A multi-individual pharmacokinetic model framework for interpreting time trends of persistent chemicals in human populations: application to a postban situation. Environ Health Perspect 117(8):1280–1286

    Article  CAS  Google Scholar 

  • Rohde S, Moser GA, Päpke O, McLachlan MS (1999) Clearance of PCDD/Fs via the gastrointestinal tract in occupationally exposed persons. Chemosphere 38(14):3397–3410

    Article  CAS  Google Scholar 

  • Sarigiannis DA, Karakitsios SP, Handakas E, Simou K, Solomou E, Gotti A (2016) Integrated exposure and risk characterization of bisphenol-A in Europe. Food Chem Toxicol 98:134–147

    Article  CAS  Google Scholar 

  • Suciu N, Tediosi A, Ciffroy P, Altenpohl A, Brochot C, Verdonck F, Ferrari F, Giubilato E, Capri E, Fait G (2016) Potential for MERLIN-Expo, an advanced tool for higher tier exposure assessment, within the EU chemical legislative frameworks. Sci Total Environ 562:474–479

    Article  CAS  Google Scholar 

  • Thuresson K, Höglund P, Hagmar L, Sjödin A, Bergman Ã…, Jakobsson K (2005) Apparent half-lives of hepta-to decabrominated diphenyl ethers in human serum as determined in occupationally exposed workers. Environ Health Perspect 114(2):176–181

    Article  CAS  Google Scholar 

  • Trudel D, Horowitz L, Wormuth M, Scheringer M, Cousins IT, Hungerbühler K (2008) Estimating consumer exposure to PFOS and PFOA. Risk Anal 28(2):251–269

    Article  Google Scholar 

  • Trudel D, Scheringer M, von Goetz N, Hungerbühler K (2011) Total consumer exposure to polybrominated diphenyl ethers in North America and Europe. Environ Sci Technol 45(6):2391–2397

    Article  CAS  Google Scholar 

  • Undeman E, Brown TN, McLachlan MS, Wania F (2018) Who in the world is most exposed to polychlorinated biphenyls? Using models to identify highly exposed populations. Environ Res Lett 13(6):064036

    Article  CAS  Google Scholar 

  • Undeman E, Brown TN, Wania F, McLachlan MS (2010) Susceptibility of human populations to environmental exposure to organic contaminants. Environ Sci Technol 44(16):6249–6255

    Article  CAS  Google Scholar 

  • Wania F, Breivik K, Persson NJ, McLachlan MS (2006) CoZMo-POP 2–A fugacity-based dynamic multi-compartmental mass balance model of the fate of persistent organic pollutants. Environ Model Softw 21(6):868–884

    Article  Google Scholar 

  • Wetmore BA, Wambaugh JF, Ferguson SS, Sochaski MA, Rotroff DM, Freeman K, Clewell HJ III, Dix DJ, Andersen ME, Houck KA (2011) Integration of dosimetry, exposure, and high-throughput screening data in chemical toxicity assessment. Toxicol Sci 125(1):157–174

    Article  CAS  Google Scholar 

  • Williams DT, LeBel GL, Furmanczyk T (1980) Polychlorinated biphenyl contamination of laboratory air. Chemosphere 9(1):45–50

    Article  CAS  Google Scholar 

  • Wolff MS, Anderson HA, Britton JA, Rothman N (2007) Pharmacokinetic variability and modern epidemiology—the example of dichlorodiphenyltrichloroethane, body mass index, and birth cohort. Cancer Epidemiol Biomark Prev 16(10):1925–1930

    Article  CAS  Google Scholar 

  • Wolff MS, Fischbein A, Selikoff IJ (1992) Changes in PCB serum concentrations among capacitor manufacturing workers. Environ Res 59(1):202–216

    Article  CAS  Google Scholar 

  • Wong F, Cousins IT, MacLeod M (2013) Bounding uncertainties in intrinsic human elimination half-lives and intake of polybrominated diphenyl ethers in the North American population. Environ Int 59:168–174

    Article  CAS  Google Scholar 

  • Wong F, MacLeod M, Mueller JF, Cousins IT (2014) Enhanced elimination of perfluorooctane sulfonic acid by menstruating women: Evidence from population-based pharmacokinetic modeling. Environ Sci Technol 48(15):8807–8814

    Article  CAS  Google Scholar 

  • Wood SA, Armitage JM, Binnington MJ, Wania F (2016a) Deterministic modeling of the exposure of individual participants in the National Health and Nutrition Examination Survey (NHANES) to polychlorinated biphenyls. Environ Sci Process Impact 18(9):1157–1168

    Article  CAS  Google Scholar 

  • Wood SA, Xu F, Armitage JM, Wania F (2016b) Unravelling the relationship between body mass index and polychlorinated biphenyl concentrations using a mechanistic model. Environ Sci Technol 50(18):10055–10064

    Article  CAS  Google Scholar 

  • Yang C, Harris SA, Jantunen LM, Siddique S, Kubwabo C, Tsirlin D, Latifovic L, Fraser B, St-Jean M, De La Campa R (2019) Are cell phones an indicator of personal exposure to organophosphate flame retardants and plasticizers? Environ Int 122:104–116

    Article  CAS  Google Scholar 

  • Zartarian V, Bahadori T, McKone T (2005) Adoption of an official ISEA glossary. J Expo Anal Environ Epidemiol 15(1):1–5

    Article  CAS  Google Scholar 

  • Zhang X, Arnot JA, Wania F (2014) Model for screening-level assessment of near-field human exposure to neutral organic chemicals released indoors. Environ Sci Technol 48(20):12312–12319

    Article  CAS  Google Scholar 

  • Zhao S, Breivik K, Jones KC, Sweetman AJ (2018) Modeling the time-variant dietary exposure of PCBs in China over the period 1930 to 2100. Environ Sci Technol 52(13):7371–7379

    Article  CAS  Google Scholar 

  • Zhao S, Price O, Liu Z, Jones KC, Sweetman AJ (2015) Applicability of western chemical dietary exposure models to the Chinese population. Environ Res 140:165–176

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Wania .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wania, F., Li, L., McLachlan, M.S. (2020). Mechanistically Modeling Human Exposure to Persistent Organic Pollutants. In: Jiang, G., Li, X. (eds) A New Paradigm for Environmental Chemistry and Toxicology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9447-8_9

Download citation

Publish with us

Policies and ethics