Skip to main content

Research Progress on Key Technologies of Radar Signal Sorting

  • Conference paper
  • First Online:
Recent Trends in Intelligent Computing, Communication and Devices

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1006))

Abstract

The complexity and computational complexity of the radar receiver signal processing are mainly concentrated on the signal sorting process. The precondition of radar signal sorting is to extract signal features and then to select key features for sorting. This paper discusses several aspects from feature extraction technology and feature selection technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xiong, J., Wang, W.Q., Cui, C., Gao, K.D.: Cognitive FDA-MIMO radar for LPI transmit beamforming. IET J. Mag. 11(11), 1574–1580 (2017)

    Google Scholar 

  2. Murthy, C.A.: Bridging feature selection and extraction: compound feature generation. IEEE Trans. Knowl. Data Eng. 29(4), 757–770 (2017)

    Article  Google Scholar 

  3. Han, N., Song, Y., Song, Z.: Bayesian robust principal component analysis with structured sparse component. Comput. Stat. Data Anal. 109, 144–158 (2017)

    Article  MathSciNet  Google Scholar 

  4. Huang, S., Yang, D., Zhou, J., Zhang, X.H.: Graph regularized linear discriminant analysis and its generalization. Pattern Anal. Appl. 18(3), 639–650 (2015)

    Article  MathSciNet  Google Scholar 

  5. Chen, L.F., Liao, H.Y.M., Ko, M.T., Lin, J.C., Yu, G.J.: A new LDA-based face recognition system which can solve the small sample size. Pattern Recogn. 33, 1713–1726 (2000)

    Article  Google Scholar 

  6. Zhang, J., Liu, Y.: SVM decision boundary based discriminative subspace induction. Pattern Recogn. 38(10), 1746–1758 (2005)

    Article  Google Scholar 

  7. Hild II, K.E., Erdogmus, D., Tokkola, K., Principe, J.C.: Feature extraction using information-theoretic learning. IEEE Trans. PAMI 28(9), 1385–1392 (2006)

    Article  Google Scholar 

  8. Zhu, M., Matinez, A.M.: Subclass discriminant analysis. IEEE Trans. PAMI 28(8), 1274–1286 (2006)

    Article  Google Scholar 

  9. He, X., Yan, S., Hu, Y., Zhang, H.J.: Learning a locality preserving subspace for visual recognition. In: Proceedings of 9th ICCV, Nice, France, pp. 385–392 (2003)

    Google Scholar 

  10. Yan, S., Xu, D., Zhang, B., Zhang, H.J., Yang, Q., Lin, S.: Graph embedding and extension: a general framework for dimensionality reduction. IEEE Trans. PAMI 29(1), 40–51 (2007)

    Article  Google Scholar 

  11. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  12. Yang, J., Frangi, A.F., Yang, J.Y., et al.: KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition. IEEE Trans. PAMI 27(2), 238–244 (2005)

    Google Scholar 

  13. Huang, N.E.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. J. Proc. R. Soc. Lond. A. 454, 903–995 (1998)

    Article  MathSciNet  Google Scholar 

  14. Li, H.G., Hu, Y., Li, F.C., Meng, G.: Succinct and fast empirical mode decomposition. Mech. Syst. Signal Process. 85, 879–895 (2017)

    Article  Google Scholar 

  15. Wang, J., Xu, H.P., Wei, J.M.: Feature selection via vectorizing feature’s discriminative information. Lect. Notes Comput. Sci. 9931(1), 493–505 (2016)

    Article  Google Scholar 

  16. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  17. Kohavi, R., Tohu, G.: Wrappers for feature selection. Artif. Intell. 97(1–2), 273–324 (1997)

    Article  Google Scholar 

  18. Tibshirani, R.: Regression selection and shrinkage via the lasso. J. Roy. Stat. Soc. Ser. B 58(1), 267–288 (1996)

    MATH  Google Scholar 

  19. Bi, J., Bennett, K., Embrecht, M., Breneman, C., Song, M.: Dimensionality reduction via sparse support vector machines. J. Mach. Learn. Res. 3, 1229–1243 (2003)

    MATH  Google Scholar 

  20. Viola, P., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of CVPR 2001, Hawaii, vol. 1, pp. 511–518 (2001)

    Google Scholar 

  21. Bins, J., Draper, B.A.: Feature selection from huge feature sets. In: Proceedings of 8th ICCV, vol. 2, pp. 159–165 (2001)

    Google Scholar 

  22. Kudo, M., Sklansky, J.: Comparison of algorithms that select features for pattern classifiers. Pattern Recogn. 33(1), 25–41 (2000)

    Article  Google Scholar 

  23. Battiti, R.: Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Networks 5(4), 537–550 (1994)

    Article  Google Scholar 

  24. Pawlak, Z.: Rough sets. Int. J. Comput. Inform. Sci. 11, 341–356 (1982)

    Article  Google Scholar 

  25. Jia, X.Y., Shang, L., Zhou, B., Yao, Y.Y.: Generalized attribute reduct in rough set theory. Knowl.-Based Syst. 91, 204–218 (2016)

    Article  Google Scholar 

  26. Zhang, G.X., Hu, L.Z., Jin, W.D.: Discretization of continuous attributes in rough set theory and its application. Lect. Notes Comput. Sci. 3314, 1020–1026 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This paper was supported in part by the National Natural Science Foundation of China under the Grant no. 61601499, 61701527, and 61601503.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-yong Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Sq., Gao, C., Zhang, Q., Zeng, Hy., Bai, J. (2020). Research Progress on Key Technologies of Radar Signal Sorting. In: Jain, V., Patnaik, S., Popențiu Vlădicescu, F., Sethi, I. (eds) Recent Trends in Intelligent Computing, Communication and Devices. Advances in Intelligent Systems and Computing, vol 1006. Springer, Singapore. https://doi.org/10.1007/978-981-13-9406-5_92

Download citation

Publish with us

Policies and ethics