Skip to main content

Orthopedical Nanotechnology

  • Living reference work entry
  • First Online:
Nanomedicine

Part of the book series: Micro/Nano Technologies ((MNT))

  • 26 Accesses

Abstract

Nanotechnology is considered to be a very promising platform for biomedical applications. Most recently, this modern technology has brought innovation in the field of nanomedicine, particularly within orthopedics. Various kinds of nanotechnology-based biomaterials with novel physical, chemical, and biological properties have been applied in orthopedics to improve the way of diagnosis and treatment. In this chapter, nanotechnology-based biomaterials that used within the field of orthopedics, including metallic nanomaterials, nonmetallic nanomaterials, are briefly introduced. We further summaries the biomedical applications of nanotechnology-based biomaterials in terms of bone/cartilage tissue engineering for scaffolds preparation, surface modifications for implantable materials with enhanced osteointegration properties, diagnosis and therapeutics for oncology and musculoskeletal infections, and nanotechnology-based drug delivery systems in orthopedics. Although nanotechnology has revolutionized the diagnosis of and treatment for orthopedics, there are still some future obstacles that have been discussed that extensive clinical safety investigations should be further performed to verify their long-term effects on human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Medical Advisory Secretariat (2006) Nanotechnology: an evidence-based analysis. Ont Health Technol Assess Ser 6(19):1–43

    Google Scholar 

  2. Stylios GK (2013) There is plenty of room at the bottom, R.P. Feynman. Int J Cloth Sci Technol 25(5)

    Google Scholar 

  3. Garimella R, Eltorai AEM (2017) Nanotechnology in orthopedics. J Orthop 14(1):30–33

    Article  Google Scholar 

  4. Ravichandran R (2009) Nanotechnology-based drug delivery systems. NanoBiotechnology 5(1):17–33

    Article  Google Scholar 

  5. Laird NZ, Acri TM, Chakka JL, Quarterman JC, Malkawi WI, Elangovan S, Salem AK (2021) Applications of nanotechnology in 3D printed tissue engineering scaffolds. Eur J Pharm Biopharm 161:15–28

    Article  Google Scholar 

  6. Wang Q, Yan J, Yang J, Li B (2016) Nanomaterials promise better bone repair. Mater Today 19(8):451–463

    Article  Google Scholar 

  7. Rajula MPB, Narayanan V, Venkatasubbu GD, Mani RC, Sujana A (2021) Nano-hydroxyapatite: a driving force for bone tissue engineering. J Pharm Bioallied Sci 13(Suppl 1):S11–S14

    Google Scholar 

  8. Vieira S, Vial S, Reis RL, Oliveira JM (2017) Nanoparticles for bone tissue engineering. Biotechnol Prog 33(3):590–611

    Article  Google Scholar 

  9. Li C, Guo C, Fitzpatrick V, Ibrahim A, Zwierstra MJ, Hanna P, Lechtig A, Nazarian A, Lin SJ, Kaplan DL (2020) Design of biodegradable, implantable devices towards clinical translation. Nat Rev Mater 5(1):61–81

    Article  Google Scholar 

  10. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 16(1):71

    Article  Google Scholar 

  11. Smith WR, Hudson PW, Ponce BA, Rajaram Manoharan SR (2018) Nanotechnology in orthopedics: a clinically oriented review. BMC Musculoskelet Disord 19(1):67

    Article  Google Scholar 

  12. Öhman-Mägi C, Holub O, Wu D, Hall RM, Persson C (2021) Density and mechanical properties of vertebral trabecular bone-A review. JOR Spine 4(4):e1176

    Article  Google Scholar 

  13. Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141

    Article  Google Scholar 

  14. Prasad K, Bazaka O, Chua M, Rochford M, Fedrick L, Spoor J, Symes R, Tieppo M, Collins C, Cao A, Markwell D, Ostrikov KK, Bazaka K (2017) Metallic biomaterials: current challenges and opportunities. Materials (Basel, Switzerland) 10(8):884

    Article  Google Scholar 

  15. Rahman M, Dutta NK, Roy Choudhury N (2020) Magnesium alloys with tunable interfaces as bone implant materials. Front Bioeng Biotechnol 8

    Google Scholar 

  16. Chen Y, Xu Z, Smith C, Sankar J (2014) Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater 10(11):4561–4573

    Article  Google Scholar 

  17. Niinomi M (2003) Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater 4(5):445–454

    Article  Google Scholar 

  18. Manam NS, Harun WSW, Shri DNA, Ghani SAC, Kurniawan T, Ismail MH, Ibrahim MHI (2017) Study of corrosion in biocompatible metals for implants: a review. J Alloys Compd 701:698–715

    Article  Google Scholar 

  19. Hua L, Lei T, Qian H, Zhang Y, Hu Y, Lei P (2021) 3D-printed porous tantalum: recent application in various drug delivery systems to repair hard tissue defects. Expert Opin Drug Deliv 18(5):625–634

    Article  Google Scholar 

  20. Zadpoor AA (2019) Additively manufactured porous metallic biomaterials. J Mater Chem B 7(26):4088–4117

    Article  Google Scholar 

  21. Deering J, Grandfield K (2021) Current interpretations on the in vivo response of bone to additively manufactured metallic porous scaffolds: a review. Biomater Biosyst 2:100013

    Article  Google Scholar 

  22. Ambard AJ, Mueninghoff L (2006) Calcium phosphate cement: review of mechanical and biological properties. J Prosthodont 15(5):321–328

    Article  Google Scholar 

  23. Li L, Li Y, Yang L, Yu F, Zhang K, Jin J, Shi J, Zhu L, Liang H, Wang X, Jiang Q (2019) Polydopamine coating promotes early osteogenesis in 3D printing porous Ti6Al4V scaffolds. Ann Transl Med 7(11):240

    Article  Google Scholar 

  24. Li L, Shi J, Zhang K, Yang L, Yu F, Zhu L, Liang H, Wang X, Jiang Q (2019) Early osteointegration evaluation of porous Ti6Al4V scaffolds designed based on triply periodic minimal surface models. J Orthop Translat 19:94–105

    Article  Google Scholar 

  25. Zhang Y, Wang P, Mao H, Zhang Y, Zheng L, Yu P, Guo Z, Li L, Jiang Q (2021) PEGylated gold nanoparticles promote osteogenic differentiation in in vitro and in vivo systems. Mater Des 197:109231

    Article  Google Scholar 

  26. Wang Q, Chen B, Ma F, Lin S, Cao M, Li Y, Gu N (2017) Magnetic iron oxide nanoparticles accelerate osteogenic differentiation of mesenchymal stem cells via modulation of long noncoding RNA INZEB2. Nano Res 10(2):626–642

    Article  Google Scholar 

  27. Li J, Li JJ, Zhang J, Wang X, Kawazoe N, Chen G (2016) Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale 8(15):7992–8007

    Article  Google Scholar 

  28. Zhang Y, Li Y, Liao W, Peng W, Qin J, Chen D, Zheng L, Yan W, Li L, Guo Z, Wang P, Jiang Q (2021) Citrate-stabilized gold nanorods-directed osteogenic differentiation of multiple cells. Int J Nanomedicine 16:2789–2801

    Article  Google Scholar 

  29. Zhang Y, Kong N, Zhang Y, Yang W, Yan F (2017) Size-dependent effects of gold nanoparticles on osteogenic differentiation of human periodontal ligament progenitor cells. Theranostics 7(5):1214–1224

    Article  Google Scholar 

  30. Wang Q, Chen B, Cao M, Sun J, Wu H, Zhao P, Xing J, Yang Y, Zhang X, Ji M, Gu N (2016) Response of MAPK pathway to iron oxide nanoparticles in vitro treatment promotes osteogenic differentiation of hBMSCs. Biomaterials 86:11–20

    Article  Google Scholar 

  31. Yuan K, Mei J, Shao D, Zhou F, Qiao H, Liang Y, Li K, Tang T (2020) Cerium oxide nanoparticles regulate osteoclast differentiation bidirectionally by modulating the cellular production of reactive oxygen species. Int J Nanomedicine 15:6355–6372

    Article  Google Scholar 

  32. Huang C, Dong J, Zhang Y, Chai S, Wang X, Kang S, Yu D, Wang P, Jiang Q (2021) Gold nanoparticles-loaded polyvinylpyrrolidone/ethylcellulose coaxial electrospun nanofibers with enhanced osteogenic capability for bone tissue regeneration. Mater Des 212:110240

    Article  Google Scholar 

  33. Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61(9):1189–1224

    Article  Google Scholar 

  34. Zhao X, Karthik N, Xiong D, Liu Y (2020) Bio-inspired surface modification of PEEK through the dual cross-linked hydrogel layers. J Mech Behav Biomed Mater 112:104032

    Article  Google Scholar 

  35. Li C, Sun J, Shi K, Long J, Li L, Lai Y, Qin L (2020) Preparation and evaluation of osteogenic nano-MgO/PMMA bone cement for bone healing in a rat critical size calvarial defect. J Mater Chem B 8(21):4575–4586

    Article  Google Scholar 

  36. Kokubo T (1991) Bioactive glass ceramics: properties and applications. Biomaterials 12(2):155–163

    Article  Google Scholar 

  37. Wei J, Li Y (2004) Tissue engineering scaffold material of nano-apatite crystals and polyamide composite. Eur Polym J 40(3):509–515

    Article  MathSciNet  Google Scholar 

  38. Li L, Zhang K, Wang T, Wang P, Xue B, Cao Y, Zhu L, Jiang Q (2020) Biofabrication of a biomimetic supramolecular-polymer double network hydrogel for cartilage regeneration. Mater Des 189:108492

    Article  Google Scholar 

  39. Serra G, Morais L, Elias CN, Semenova IP, Valiev R, Salimgareeva G, Pithon M, Lacerda R (2013) Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants. Mater Sci Eng C 33(7):4197–4202

    Article  Google Scholar 

  40. Nazeer MA, Yilgör E, Yilgör I (2017) Intercalated chitosan/hydroxyapatite nanocomposites: promising materials for bone tissue engineering applications. Carbohydr Polym 175:38–46

    Article  Google Scholar 

  41. Türk S, Altınsoy I, Çelebi Efe G, Ipek M, Özacar M, Bindal C (2018) 3D porous collagen/functionalized multiwalled carbon nanotube/chitosan/hydroxyapatite composite scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 92:757–768

    Article  Google Scholar 

  42. Peng W, Ren S, Zhang Y, Fan R, Zhou Y, Li L, Xu X, Xu Y (2021) MgO nanoparticles-incorporated PCL/gelatin-derived coaxial electrospinning nanocellulose membranes for periodontal tissue regeneration. Front Bioeng Biotechnol 9:668428

    Article  Google Scholar 

  43. Cestari F, Petretta M, Yang Y, Motta A, Grigolo B, Sglavo VM (2021) 3D printing of PCL/nano-hydroxyapatite scaffolds derived from biogenic sources for bone tissue engineering. Sustain Mater Technol 29:e00318

    Google Scholar 

  44. Losic D, Aw MS, Santos A, Gulati K, Bariana M (2015) Titania nanotube arrays for local drug delivery: recent advances and perspectives. Expert Opin Drug Deliv 12(1):103–127

    Article  Google Scholar 

  45. Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25(18):4383–4391

    Article  Google Scholar 

  46. Zheng Y, Liu W, Chen Y, Li C, Jiang H, Wang X (2019) Conjugating gold nanoclusters and antimicrobial peptides: from aggregation-induced emission to antibacterial synergy. J Colloid Interface Sci 546:1–10

    Article  Google Scholar 

  47. Lu W, Yao J, Zhu X, Qi Y (2021) Nanomedicines: redefining traditional medicine. Biomed Pharmacother 134:111103

    Article  Google Scholar 

  48. Yang Y, Sun B, Zuo S, Li X, Zhou S, Li L, Luo C, Liu H, Cheng M, Wang Y, Wang S, He Z, Sun J (2020) Trisulfide bond-mediated doxorubicin dimeric prodrug nanoassemblies with high drug loading, high self-assembly stability, and high tumor selectivity. Sci Adv 6(45)

    Google Scholar 

  49. Yang X, Chen S, Liu X, Yu M, Liu X (2019) Drug delivery based on nanotechnology for target bone disease. Curr Drug Deliv 16(9):782–792

    Article  Google Scholar 

  50. Zheng L, Zhuang Z, Li Y, Shi T, Fu K, Yan W, Zhang L, Wang P, Li L, Jiang Q (2021) Bone targeting antioxidative nano-iron oxide for treating postmenopausal osteoporosis. Bioact Mater

    Google Scholar 

  51. Wei Y, Luo L, Gui T, Yu F, Yan L, Yao L, Zhong L, Yu W, Han B, Patel JM, Liu JF, Beier F, Levin LS, Nelson C, Shao Z, Han L, Mauck RL, Tsourkas A, Ahn J, Cheng Z, Qin L (2021) Targeting cartilage EGFR pathway for osteoarthritis treatment. Sci Transl Med 13(576)

    Google Scholar 

  52. Shi D, Xu X, Ye Y, Song K, Cheng Y, Di J, Hu Q, Li J, Ju H, Jiang Q, Gu Z (2016) Photo-cross-linked scaffold with kartogenin-encapsulated nanoparticles for cartilage regeneration. ACS Nano 10(1):1292–1299

    Article  Google Scholar 

  53. Takizawa T, Nakayama N, Haniu H, Aoki K, Okamoto M, Nomura H, Tanaka M, Sobajima A, Yoshida K, Kamanaka T, Ajima K, Oishi A, Kuroda C, Ishida H, Okano S, Kobayashi S, Kato H, Saito N (2018) Titanium fiber plates for bone tissue repair. Adv Mater 30(4)

    Google Scholar 

  54. Meagher P, O’Cearbhaill ED, Byrne JH, Browne DJ (2016) Bulk metallic glasses for implantable medical devices and surgical tools. Adv Mater 28(27):5755–5762

    Article  Google Scholar 

  55. Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH (2020) Nanotechnology-based biomaterials for orthopaedic applications: recent advances and future prospects. Mater Sci Eng C Mater Biol Appl 106:110154

    Article  Google Scholar 

  56. Sichert JA, Tong Y, Mutz N, Vollmer M, Fischer S, Milowska KZ, García Cortadella R, Nickel B, Cardenas-Daw C, Stolarczyk JK, Urban AS, Feldmann J (2015) Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett 15(10):6521–6527

    Article  Google Scholar 

  57. Karazisis D, Ballo AM, Petronis S, Agheli H, Emanuelsson L, Thomsen P, Omar O (2016) The role of well-defined nanotopography of titanium implants on osseointegration: cellular and molecular events in vivo. Int J Nanomedicine 11:1367–1382

    Google Scholar 

  58. Hsu WK, Goldstein CL, Shamji MF, Cho SK, Arnold PM, Fehlings MG, Mroz TE (2017) Novel osteobiologics and biomaterials in the treatment of spinal disorders. Neurosurgery 80(3s):S100–S107

    Article  Google Scholar 

  59. Olivares-Navarrete R, Hyzy SL, Slosar PJ, Schneider JM, Schwartz Z, Boyan BD (2015) Implant materials generate different peri-implant inflammatory factors: poly-ether-ether-ketone promotes fibrosis and microtextured titanium promotes osteogenic factors. Spine (Phila Pa 1976) 40(6):399–404

    Article  Google Scholar 

  60. Xu W, Birbilis N, Sha G, Wang Y, Daniels JE, Xiao Y, Ferry M (2015) A high-specific-strength and corrosion-resistant magnesium alloy. Nat Mater 14(12):1229–1235

    Article  Google Scholar 

  61. Lin Z, Wu J, Qiao W, Zhao Y, Wong KHM, Chu PK, Bian L, Wu S, Zheng Y, Cheung KMC, Leung F, Yeung KWK (2018) Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in-situ bone regeneration. Biomaterials 174:1–16

    Article  Google Scholar 

  62. Li Y, Zhao S, Li S, Ge Y, Wang R, Zheng L, Xu J, Sun M, Jiang Q, Zhang Y, Wei H (2019) Surface engineering of biodegradable magnesium alloys for enhanced orthopedic implants. Small 15(51):e1904486

    Article  Google Scholar 

  63. Sun KY, Wu Y, Xu J, Xiong W, Xu W, Li J, Sun Z, Lv Z, Wu XS, Jiang Q, Cai HL, Shi D (2022) Niobium carbide (MXene) reduces UHMWPE particle-induced osteolysis. Bioact Mater 8:435–448

    Article  Google Scholar 

  64. Diabb Zavala JM, Leija Gutiérrez HM, Segura-Cárdenas E, Mamidi N, Morales-Avalos R, Villela-Castrejón J, Elías-Zúñiga A (2021) Manufacture and mechanical properties of knee implants using SWCNTs/UHMWPE composites. J Mech Behav Biomed Mater 120:104554

    Article  Google Scholar 

  65. Khammissa RA, Feller L, Meyerov R, Lemmer J (2012) Peri-implant mucositis and peri-implantitis: bacterial infection. SADJ 67(2):70, 72–74

    Google Scholar 

  66. Jin G, Qin H, Cao H, Qian S, Zhao Y, Peng X, Zhang X, Liu X, Chu PK (2014) Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium. Biomaterials 35(27):7699–7713

    Article  Google Scholar 

  67. Xu Z, Li M, Li X, Liu X, Ma F, Wu S, Yeung KW, Han Y, Chu PK (2016) Antibacterial activity of silver doped titanate nanowires on Ti implants. ACS Appl Mater Interfaces 8(26):16584–16594

    Article  Google Scholar 

  68. Li M, Liu X, Xu Z, Yeung KW, Wu S (2016) Dopamine modified organic-inorganic hybrid coating for antimicrobial and osteogenesis. ACS Appl Mater Interfaces 8(49):33972–33981

    Article  Google Scholar 

  69. Susa M, Milane L, Amiji M, Hornicek F, Duan Z (2011) Nanoparticles: a promising modality in the treatment of sarcomas. Pharm Res 28(2):260–272

    Article  Google Scholar 

  70. Gavaskar A, Rojas D, Videla F (2018) Nanotechnology: the scope and potential applications in orthopedic surgery. Eur J Orthop Surg Traumatol 28(7):1257–1260

    Article  Google Scholar 

  71. Cai W, Shin D, Chen K, Gheysens O, Cao Q, Wang S, Gambhir S, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6(4):669–676

    Article  Google Scholar 

  72. Hennig S, van de Linde S, Lummer M, Simonis M, Huser T, Sauer M (2015) Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes. Nano Lett 15(2):1374–1381

    Article  Google Scholar 

  73. Zhang Y, Li M, Gao X, Chen Y, Liu T (2019) Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol 12(1):137

    Article  Google Scholar 

  74. Luthringer B, Ali F, Akaichi H, Feyerabend F, Ebel T, Willumeit R (2013) Production, characterisation, and cytocompatibility of porous titanium-based particulate scaffolds. J Mater Sci Mater Med 24(10):2337–2358

    Article  Google Scholar 

  75. Tran P, Sarin L, Hurt R, Webster T (2010) Differential effects of nanoselenium doping on healthy and cancerous osteoblasts in coculture on titanium. Int J Nanomedicine 5:351–358

    Google Scholar 

  76. Puckett S, Taylor E, Raimondo T, Webster T (2010) The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 31(4):706–713

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wang, P., Jiang, Q. (2022). Orthopedical Nanotechnology. In: Gu, N. (eds) Nanomedicine. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-9374-7_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9374-7_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9374-7

  • Online ISBN: 978-981-13-9374-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics