Skip to main content

A Survey on Energy Efficiency in Metal Wire Deposition Processes

  • Conference paper
  • First Online:
Sustainable Design and Manufacturing 2019 (KES-SDM 2019)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 155))

Included in the following conference series:

Abstract

Additive manufacturing (AM), which includes different technologies, allows free-form parts to be produced flexibly by selectively depositing material layer after layer. Among the various AM processes, metal wire deposition (MWD), which uses a metal wire melted by a high-energy source as feedstock, has been found to be suitable for the manufacturing of low-complexity, medium-to-large components at relatively high deposition rates. Some industrial applications have been identified, despite the quality of the as-deposited surfaces, which usually require further finishing operations. Several researches have been focused on process optimization. However, there is still a lack of consolidated knowledge concerning the environmental impact and the energy efficiency of MWD, aspects that are critically surveyed in this paper. First, the unit process level is considered, and an analysis of the needed specific energy input, while the wire flow rate and the deposited materials are varied, is carried out. Second, a framework is proposed to assess the energy requirements under a cradle-to-gate perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Szost, B.A., Terzi, S., Martina, F., Boisselier, D., Prytuliak, A., Pirling, T., Hofmann, M., Jarvis, D.J.: A comparative study of additive manufacturing techniques: residual stress and microstructural analysis of CLAD and WAAM printed Ti-6Al-4V components. Mater. Des. 89, 559–567 (2016)

    Article  Google Scholar 

  2. Zhang, C., Li, Y., Gao, M., Zeng, X.: Wire arc additive manufacturing of Al-6Mg alloy using variable polarity cold metal transfer arc as power source. Mater. Sci. Eng. A 711, 415–423 (2018)

    Article  Google Scholar 

  3. Wang, J., Pan, Z., Ma, Y., Lu, Y., Shen, C., Cuiuri, D., Li, H.: Characterization of wire arc additively manufactured titanium aluminide functionally graded material: microstructure, mechanical properties and oxidation behavior. Mater. Sci. Eng. A 734, 110–119 (2018)

    Article  Google Scholar 

  4. Williams, S.W., Martina, F., Addison, A.C., Ding, J., Pardal, G., Colegrove, P.: Wire + arc additive manufacturing. Mater. Sci. Technol. 32, 641–647 (2016)

    Article  Google Scholar 

  5. Åkerfeldt, P., Antti, M.-L., Pederson, R.: Influence of microstructure on mechanical properties of laser metal wire-deposited Ti-6Al-4V. Mater. Sci. Eng. A 674, 428–437 (2016)

    Article  Google Scholar 

  6. Heralić, A., Christiansson, A.-K., Lennartson, B.: Height control of laser metal-wire deposition based on iterative learning control and 3D scanning. Opt. Lasers Eng. 50, 1230–1241 (2012)

    Article  Google Scholar 

  7. Demir, A.G.: Micro laser metal wire deposition for additive manufacturing of thin-walled structures. Opt. Lasers Eng. 100, 9–17 (2018)

    Article  Google Scholar 

  8. Yilmaz, O., Ugla, A.A.: Shaped metal deposition technique in additive manufacturing: A review. Proc. Inst. Mech. Eng. Part B: J. Eng. Manufact. 230, 1781–1798 (2016)

    Article  Google Scholar 

  9. Karunakaran, K.P., Suryakumar, S., Pushpa, V., Akula, S.: Low cost integration of additive and subtractive processes for hybrid layered manufacturing. Robot. Comput.-Integr. Manufact. 26, 490–499 (2010)

    Article  Google Scholar 

  10. Derekar, K.S.: A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium. Mater. Sci. Technol. 34, 895–916 (2018)

    Article  Google Scholar 

  11. Ding, D., Pan, Z., Cuiuri, D., Li, H.: Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int. J. Adv. Manufact. Technol. 81, 465–481 (2015)

    Article  Google Scholar 

  12. Martina, F., Ding, J., Williams, S., Caballero, A., Pardal, G., Quintino, L.: Tandem metal inert gas process for high productivity wire arc additive manufacturing in stainless steel. Addit. Manufact. 25, 545–550 (2018)

    Article  Google Scholar 

  13. Brandl, E., Palm, F., Michailov, V., Viehweger, B., Leyens, C.: Mechanical properties of additive manufactured titanium (Ti–6Al–4V) blocks deposited by a solid-state laser and wire. Mater. Des. 32, 4665–4675 (2011)

    Article  Google Scholar 

  14. Froend, M., Riekehr, S., Kashaev, N., Klusemann, B., Enz, J.: Process development for wire-based laser metal deposition of 5087 aluminium alloy by using fibre laser. J. Manufact. Process. 34, 721–732 (2018)

    Article  Google Scholar 

  15. Syed, W.U.H., Pinkerton, A.J., Lin, L.: Combining wire and coaxial powder feeding in laser direct metal deposition for rapid prototyping. Appl. Surf. Sci. 252, 4803–4808 (2006)

    Article  Google Scholar 

  16. Xiong, J., Li, Y.-J., Yin, Z.-Q., Chen, H.: Determination of surface roughness in wire and arc additive manufacturing based on laser vision sensing. Chin. J. Mech. Eng. 31 (2018)

    Google Scholar 

  17. Sun, R., Li, L., Zhu, Y., Guo, W., Peng, P., Cong, B., Sun, J., Che, Z., Li, B., Guo, C., Liu, L.: Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminum alloy with laser shock peening. J. Alloy. Compd. 747, 255–265 (2018)

    Article  Google Scholar 

  18. Qi, Z., Cong, B., Qi, B., Zhao, G., Ding, J.: Properties of wire + arc additively manufactured 2024 aluminum alloy with different solution treatment temperature. Mater. Lett. 230, 275–278 (2018)

    Article  Google Scholar 

  19. Lopez, A., Bacelar, R., Pires, I., Santos, T.G., Sousa, J.P., Quintino, L.: Non-destructive testing application of radiography and ultrasound for wire and arc additive manufacturing. Addit. Manufact. 21, 298–306 (2018)

    Article  Google Scholar 

  20. Wu, B., Pan, Z., Ding, D., Cuiuri, D., Li, H., Xu, J., Norrish, J.: A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. J. Manufact. Process. 35, 127–139 (2018)

    Article  Google Scholar 

  21. Pan, Z., Ding, D., Wu, B., Cuiuri, D., Li, H., Norrish, J.: Arc welding processes for additive manufacturing: a review. In: Chen, S., Zhang, Y., Feng, Z. (eds.) Transactions on Intelligent Welding Manufacturing, pp. 3–24. Springer, Singapore (2018)

    Chapter  Google Scholar 

  22. Tabernero, I., Paskual, A., Álvarez, P., Suárez, A.: Study on arc welding processes for high deposition rate additive manufacturing. Procedia CIRP 68, 358–362 (2018)

    Article  Google Scholar 

  23. Gu, J., Wang, X., Bai, J., Ding, J., Williams, S., Zhai, Y., Liu, K.: Deformation microstructures and strengthening mechanisms for the wire+arc additively manufactured Al-Mg 4.5Mn alloy with inter-layer rolling. Mater. Sci. Eng. A 712, 292–301 (2018)

    Article  Google Scholar 

  24. Hönnige, J.R., Colegrove, P.A., Ganguly, S., Eimer, E., Kabra, S., Williams, S.: Control of residual stress and distortion in aluminium wire + arc additive manufacture with rolling. Addit. Manufact. 22, 775–783 (2018)

    Article  Google Scholar 

  25. Montevecchi, F., Venturini, G., Grossi, N., Scippa, A., Campatelli, G.: Idle time selection for wire-arc additive manufacturing: a finite element-based technique. Addit. Manufact. 21, 479–486 (2018)

    Article  Google Scholar 

  26. Montevecchi, F., Venturini, G., Grossi, N., Scippa, A., Campatelli, G.: Heat accumulation prevention in wire-arc-additive-manufacturing using air jet impingement. Manufact. Lett. 17, 14–18 (2018)

    Article  Google Scholar 

  27. Akbari, M., Kovacevic, R.: An investigation on mechanical and microstructural properties of 316LSi parts fabricated by a robotized laser/wire direct metal deposition system. Addit. Manufact. 23, 487–497 (2018)

    Article  Google Scholar 

  28. Ge, J., Lin, J., Chen, Y., Lei, Y., Fu, H.: Characterization of wire arc additive manufacturing 2Cr13 part: process stability, microstructural evolution, and tensile properties. J. Alloy. Compd. 748, 911–921 (2018)

    Article  Google Scholar 

  29. Motta, M., Demir, A.G., Previtali, B.: High-speed imaging and process characterization of coaxial laser metal wire deposition. Addit. Manufact. 22, 497–507 (2018)

    Article  Google Scholar 

  30. McAndrew, A.R., Alvarez Rosales, M., Colegrove, P.A., Hönnige, J.R., Ho, A., Fayolle, R., Eyitayo, K., Stan, I., Sukrongpang, P., Crochemore, A., Pinter, Z.: Interpass rolling of Ti-6Al-4V wire + arc additively manufactured features for microstructural refinement. Addit. Manufact. 21, 340–349 (2018)

    Article  Google Scholar 

  31. Wu, B., Pan, Z., Ding, D., Cuiuri, D., Li, H.: Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing. Addit. Manufact. 23, 151–160 (2018)

    Article  Google Scholar 

  32. Bekker, A.C.M., Verlinden, J.C.: Life cycle assessment of wire + arc additive manufacturing compared to green sand casting and CNC milling in stainless steel. J. Clean. Prod. 177, 438–447 (2018)

    Article  Google Scholar 

  33. Campatelli, G., Montevecchi, F., Venturini, G., Ingarao, G., Priarone, P.C.: Integrated WAAM-subtractive versus pure subtractive manufacturing approaches: an energy efficiency comparison. Int. J. Precis. Eng. Manufact. (In press). https://doi.org/10.1007/s40684-019-00071-y

  34. Jackson, M.A., Van Asten, A., Morrow, J.D., Min, S., Pfefferkorn, F.E.: Energy consumption model for additive-subtractive manufacturing processes with case study. Int. J. Precis. Eng. Manufact.-Green Technol. 5, 459–466 (2018)

    Article  Google Scholar 

  35. Xu, X., Mi, G., Luo, Y., Jiang, P., Shao, X., Wang, C.: Morphologies, microstructures, and mechanical properties of samples produced using laser metal deposition with 316 L stainless steel wire. Opt. Lasers Eng. 94, 1–11 (2017)

    Article  Google Scholar 

  36. Syed, W.U.H., Lin, L.: Effects of wire feeding direction and location in multiple layer diode laser direct metal deposition. Appl. Surf. Sci. 248, 518–524 (2005)

    Article  Google Scholar 

  37. Syed, W.U.H., Pinkerton, A.J., Lin, L.: A comparative study of wire feeding and powder feeding in direct diode laser deposition for rapid prototyping. Appl. Surf. Sci. 247, 268–276 (2005)

    Article  Google Scholar 

  38. Medrano, A., Folkes, J., Segal, J., Pashby, I.: Fibre laser metal deposition with wire: parameters study and temperature monitoring system. In: Presented at the XVII International Symposium on Gas Flow and Chemical Lasers and High Power Lasers, Lisboa, Portugal October 3 (2008)

    Google Scholar 

  39. Téllez, A.G.M.: Fibre laser metal deposition with wire: parameters study and temperature control. Ph.D. thesis, University of Nottingham, (2010)

    Google Scholar 

  40. Oliari, S.H., D’Oliveira, A.S.C.M., Schulz, M.: Additive manufacturing of H11 with wire-based laser metal deposition. Soldagem Inspeção 22, 466–479 (2017)

    Article  Google Scholar 

  41. Mok, S.H., Bi, G., Folkes, J., Pashby, I.: Deposition of Ti–6Al–4V using a high power diode laser and wire, Part I: investigation on the process characteristics. Surf. Coat. Technol. 202, 3933–3939 (2008)

    Article  Google Scholar 

  42. Caiazzo, F.: Additive manufacturing by means of laser-aided directed metal deposition of titanium wire. Int. J. Adv. Manufact. Technol. 96, 2699–2707 (2018)

    Article  Google Scholar 

  43. Froend, M., Ventzke, V., Riekehr, S., Kashaev, N., Klusemann, B., Enz, J.: Microstructure and microhardness of wire-based laser metal deposited AA5087 using an Ytterbium fibre laser. Mater. Charact. 143, 59–67 (2018)

    Article  Google Scholar 

  44. Abioye, T.E., Folkes, J., Clare, A.T.: A parametric study of Inconel 625 wire laser deposition. J. Mater. Process. Technol. 213, 2145–2151 (2013)

    Article  Google Scholar 

  45. Hussein, N.I.S., Segal, J., McCartney, D.G., Pashby, I.R.: Microstructure formation in Waspaloy multilayer builds following direct metal deposition with laser and wire. Mater. Sci. Eng. A 497, 260–269 (2008)

    Article  Google Scholar 

  46. Sun, Z., Kuo, M.: Bridging the joint gap with wire feed laser welding. J. Mater. Process. Technol. 87, 213–222 (1999)

    Article  Google Scholar 

  47. Cao, X., Xiao, M., Jahazi, M., Fournier, J., Alain, M.: Optimization of processing parameters during laser cladding of ZE41A-T5 magnesium alloy castings using Taguchi Method. Mater. Manufact. Process. 23(4), 413–418 (2008)

    Article  Google Scholar 

  48. Baufeld, B., Brandl, E., Van der Biest, O.: Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition. J. Mater. Process. Technol. 211, 1146–1158 (2011)

    Article  Google Scholar 

  49. Heralić, A.: Monitoring and control of robotized laser metal-wire deposition. Ph.D. thesis, Chalmers University of Technology, Sweden (2012)

    Google Scholar 

  50. Kara, S., Li, W.: Unit process energy consumption models for material removal processes. CIRP Ann. Manufact. Technol. 60, 37–40 (2011)

    Article  Google Scholar 

  51. Abe, T., Katagiri, M., Sasahara, H.: Accurate fabrication by improvement of lamination path on direct metal lamination using arc discharge. Proc. ASPE 2012 Ann. Meet. 54, 269–299 (2012)

    Google Scholar 

  52. Bekker, A.C.M., Verlinden, J.C., Galimberti, G.: Challenges in assessing the sustainability of wire + arc additive manufacturing for large structures. In: Solid Freeform Fabrication 2016: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, 406–416 (2016)

    Google Scholar 

  53. Duflou, J.R., Sutherland, J.W., Dornfeld, D., Herrmann, C., Jeswiet, J., Kara, S., Hauschild, M., Kellens, K.: Towards energy and resource efficient manufacturing: a processes and systems approach. Ann. CIRP 61, 587–609 (2012)

    Article  Google Scholar 

  54. Priarone, P.C., Ingarao, G.: Towards criteria for sustainable process selection: On the modelling of pure subtractive versus additive/subtractive integrated manufacturing approaches. J. Cleaner Prod. 144, 57–68 (2017)

    Article  Google Scholar 

  55. Priarone, P.C., Ingarao, G., Di Lorenzo, R., Settineri, L.: Influence of material-related aspects of additive and subtractive Ti-6Al-4V manufacturing on energy demand and carbon dioxide emissions. J. Ind. Ecol. 21, 191–202 (2017)

    Article  Google Scholar 

  56. Denys, K.: Circular motion for robotized metal deposition—verification and implementation. M.Sc. thesis, University West (2013)

    Google Scholar 

  57. Lorenz, K.A., Jones, J.B., Wimpenny, D.I., Jackson, M.R.: A review of hybrid manufacturing. In: Solid Freeform Fabrication Conference Proceedings, pp. 96–108 (2015)

    Google Scholar 

  58. Wang, F., Williams, S., Colegrove, P., Antonysamy, A.A.: Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V. Metall. Mater. Trans. A 44, 968–977 (2013)

    Article  Google Scholar 

  59. Lehmhus, D., Busse, M., von Hehl, A., Jägle, E.: State of the art and emerging trends in additive manufacturing: from multi-material processes to 3D printed Electronics. In: MATEC Web of Conferences 188, article number 03013 (2018)

    Article  Google Scholar 

  60. Frazier, W.E.: Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23, 1917–1928 (2014)

    Article  Google Scholar 

  61. Bermingham, M.J., Nicastro, L., Kent, D., Chen, Y., Dargusch, M.S.: Optimising the mechanical properties of Ti-6Al-4V components produced by wire + arc additive manufacturing with post-process heat treatments. J. Alloy. Compd. 753, 247–255 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angioletta R. Catalano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Catalano, A.R., Lunetto, V., Priarone, P.C., Settineri, L. (2019). A Survey on Energy Efficiency in Metal Wire Deposition Processes. In: Ball, P., Huaccho Huatuco, L., Howlett, R., Setchi, R. (eds) Sustainable Design and Manufacturing 2019. KES-SDM 2019. Smart Innovation, Systems and Technologies, vol 155. Springer, Singapore. https://doi.org/10.1007/978-981-13-9271-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9271-9_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9270-2

  • Online ISBN: 978-981-13-9271-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics