Skip to main content

Artificial Neural Network Approximation of Fractional-Order Derivative Operators: Analysis and DSP Implementation

  • Conference paper
  • First Online:
Fractional Calculus and Fractional Differential Equations

Part of the book series: Trends in Mathematics ((TM))

Abstract

Fractional derivative operators, due to their infinite memory feature, are difficult to simulate and implement on software and hardware platforms. The available limited-memory approximation methods have certain lacunae, viz., numerical instability, ill-conditioned coefficients, etc. This chapter deals with the artificial neural network (ANN) approximation of fractional derivative operators. The input–output data of Gr\(\ddot{u}\)nwald–Letnikov and Caputo fractional derivatives for a variety of functions like ramp, power law type, sinusoidal, Mittag-Leffler functions is used for training multilayer ANNs. A range of fractional derivative order is considered. The Levenberg–Marquardt algorithm which is the extension of back-propagation algorithm is used for training the ANNs. The criterion of mean squared error between the outputs of actual derivative and the approximations is considered for validation. The trained ANNs are found to provide a very close approximation to the fractional derivatives. These approximations are also tested for the values of fractional derivative order which are not part of the training data-set. The approximations are also found to be computationally fast as compared to the numerical evaluation of fractional derivatives. A systematic analysis of the speedup achieved using the approximations is also carried out. Also the effect of increase in number of layers (net size) and the type of mathematical function considered on the mean squared error is studied. Furthermore, to prove the numerical stability and hardware suitability, the developed ANN approximations are implemented in real time on a DSP platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oldham, K.B., Spanier, J.: The Fractional Calculus. Dover Publications, USA (2006)

    MATH  Google Scholar 

  2. Podlubny, I.: Fractional Differential Equations. Academic, USA (1999)

    MATH  Google Scholar 

  3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Netherlands (2006)

    MATH  Google Scholar 

  4. Vyawahare, V., Nataraj, P.S.V.: Fractional-order Modeling of Nuclear Reactor: from Subdiffusive Neutron Transport to Control-oriented Models: A Systematic Approach. Springer Singapore (2018)

    Chapter  Google Scholar 

  5. Chen, Y., Petras, I., Xue, D.: Fractional order control - a tutorial. In: 2009 American Control Conference, St. Louis, MO, pp. 1397–1411 (2009)

    Google Scholar 

  6. Vyawahare, V.A., Nataraj, P.S.V.: Analysis of fractional-order point reactor kinetics model with adiabatic temperature feedback for nuclear reactor with subdiffusive neutron transport. In: Obaidat, M.S. Ören, T., Kacprzyk, J., Filipe, J. (eds.) Simulation and Modeling Methodologies, Technologies and Applications, pp. 153–172. Springer International Publishing, Cham (2015)

    Google Scholar 

  7. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-order Systems and Control: Fundamentals and Applications. Springer, London Limited, UK (2010)

    Book  Google Scholar 

  8. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Germany (2011)

    Book  Google Scholar 

  9. Singhaniya, N.G., Patil, M.D., Vyawahare, V.A.: Implementation of special mathematical functions for fractional calculus using DSP processor. In: 2015 International Conference on Information Processing (ICIP), India, pp. 811–816 (2015)

    Google Scholar 

  10. Tolba, M.F., AbdelAty, A.M., Said, L.A., Elwakil, A.S., Azar, A.T., Madian, A.H., Ounnas, A., Radwan, A.G.: FPGA realization of Caputo and Grunwald-Letnikov operators. In: 2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, pp. 1–4 (2017)

    Google Scholar 

  11. Li, Chunguang, Chen, Guanrong: Chaos and hyperchaos in fractional-order Rössler equations. Phys. A: Stat. Mech. Its Appl. 341, 55–61 (2004)

    Article  Google Scholar 

  12. Li, C., Chen, G.: Chaos in the fractional order Chen system and its control. Chaos, Solitons Fractals 22

    Google Scholar 

  13. Wang, Huihai, Sun, Kehui, He, Shaobo: Characteristic analysis and DSP realization of fractional-order simplified Lorenz system based on Adomian decomposition method. Int. J. Bifurc. Chaos 25(06), 1550085 (2015)

    Article  MathSciNet  Google Scholar 

  14. Zurada, J.M.: Introduction to Artificial Neural Systems, vol. 8. West St. Paul, India (1992)

    Google Scholar 

  15. Schmidhuber, Jrgen: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  16. Maren, A.J., Harston, C.T., Pap, R.M.: Handbook of Neural Computing Applications. Academic, New York (2014)

    Google Scholar 

  17. Bose, N.K., Liang, P.: Neural Network Fundamentals with Graphs, Algorithms and Applications. Series in Electrical and Computer Engineering. McGraw-Hill, New York (1996)

    Google Scholar 

  18. Wong, B.K., Bodnovich, T.A., Selvi, Y.: Neural network applications in business: a review and analysis of the literature (1988-95). 19(04), 301–320 (1997)

    Google Scholar 

  19. Wong, B.K., Selvi, Y.: Neural network applications in finance: a review and analysis of literature (1990–1996). Inf. Manag. 34(3), 129–139 (1998)

    Article  Google Scholar 

  20. Kaslik, E., Sivasundaram, S.: Dynamics of fractional-order neural networks. In: The 2011 International Joint Conference on Neural Networks, pp. 611–618 (2011)

    Google Scholar 

  21. Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9(5), 987–1000 (1998)

    Article  Google Scholar 

  22. Zhang, S., Yu, Y., Yu, J.: Lmi conditions for global stability of fractional-order neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2423–2433 (2017)

    Article  MathSciNet  Google Scholar 

  23. Pakdaman, M., Ahmadian, A., Effati, S., Salahshour, S., Baleanu, D.: Solving differential equations of fractional order using an optimization technique based on training artificial neural network 293(01), 81–95 (2017)

    Google Scholar 

  24. Raja, M.A.Z., Samar, R., Manzar, M.A., Shah, S.M.: Design of unsupervised fractional neural network model optimized with interior point algorithm for solving Bagley–Torvik equation. Math. Comput. Simul. 132, 139–158 (2017)

    Article  MathSciNet  Google Scholar 

  25. Stamova, Ivanka, Stamov, Gani: Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers. Neural Netw. 96, 22–32 (2017)

    Article  Google Scholar 

  26. Ma, W., Li, C., Wu, Y., Wu, Y.: Synchronization of fractional fuzzy cellular neural networks with interactions. Chaos: Interdiscip. J. Nonlinear Sci. 27(10), 103106 (2017)

    Article  MathSciNet  Google Scholar 

  27. Zhang, H., Ye, R., Cao, J., Ahmed, A., Li, X., Wan, Y.: Lyapunov functional approach to stability analysis of Riemann-Liouville fractional neural networks with time-varying delays. Asian J. Control 12(35–42)

    Google Scholar 

  28. Lodhi, S., Manzar, M.A., Zahoor Raja, M.A.: Fractional neural network models for nonlinear Riccati systems. Neural Comput. Appl. 1–20 (2017)

    Google Scholar 

  29. Moré, J.J.: The Levenberg-Marquardt algorithm: implementation and theory. In: Numerical Analysis, pp. 105–116. Springer, India (1978)

    Google Scholar 

  30. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)

    MathSciNet  MATH  Google Scholar 

  31. Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 45(5), 765–772 (2006)

    Article  Google Scholar 

  32. Carpenteri, A., Mainardi, F. (eds.): Fractals and Fractional Calculus in Continuum Mechanics. Springer, USA (1997)

    Google Scholar 

  33. Compte, A., Metzler, R.: The generalized Cattaneo equation for the description of anomalous transport processes. J. Phys. A: Math. Gen. 30, 7277–7289 (1997)

    Article  MathSciNet  Google Scholar 

  34. Ross, B. (ed.): Fractional Calculus and its Applications: Proceedings of the International Conference Held at the University of New Haven (USA), June 1974. Springer, USA (1975)

    MATH  Google Scholar 

  35. Kiryakova, V.: Generalized Fractional Calculus and Applications. Longman Science and Technology, UK (1994)

    MATH  Google Scholar 

  36. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)

    Article  MathSciNet  Google Scholar 

  37. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Netherlands (1997)

    MATH  Google Scholar 

  38. Chen, Y.Q., Vinagre, B.M., Podlubny, I.: Continued fraction expansion approaches to discretizing fractional order derivativesan expository review. Nonlinear Dyn. 38(1–4), 155–170 (2004)

    Article  MathSciNet  Google Scholar 

  39. Carlson, G., Halijak, C.: Approximation of fractional capacitors (1/s)\(\wedge \)(1/n) by a regular newton process. IEEE Trans. Circuit Theory 11(2), 210–213 (1964)

    Article  Google Scholar 

  40. Khoichi, M., Hironori, F.: H-\(\infty \) optimized waveabsorbing control: analytical and experimental result. J. Guid., Control, Dyn. 16(6), 1146–1153 (1993)

    Article  Google Scholar 

  41. Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 47(1), 25–39 (2000)

    Article  Google Scholar 

  42. Charef, A., Sun, H.H., Tsao, Y.Y., Onaral, B.: Fractal system as represented by singularity function. IEEE Trans. Autom. Control. 37(9), 1465–1470 (1992)

    Article  MathSciNet  Google Scholar 

  43. Machado, J.A.: Discrete-time fractional-order controllers. Fract. Calc. Appl. Anal. 4, 47–66 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Vinagre, B.M., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3(3), 231–248 (2000)

    MathSciNet  MATH  Google Scholar 

  45. Kumar, Satish: Neural Networks: A Classroom Approach. Tata McGraw-Hill Education, India (2004)

    Google Scholar 

  46. Dayhoff, Judith E.: Neural Network Architectures: An Introduction. Van Nostrand Reinhold Co., New York (1990)

    Google Scholar 

  47. Karlik, B., Olgac, A.V.: Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int. J. Artif. Intell. Expert. Syst. 1(4), 111–122 (2011)

    Google Scholar 

  48. Carpenter, G.A.: Neural network models for pattern recognition and associative memory. Neural Netw. 2(4), 243–257 (1989)

    Article  Google Scholar 

  49. DasGupta, B., Schnitger, G.: The power of approximating: a comparison of activation functions. In: Hanson, S.J., Cowan, J.D., Giles, C.L. (eds.) Advances in Neural Information Processing Systems, vol. 5, pp. 615–622. Morgan-Kaufmann (1993)

    Google Scholar 

  50. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 9, pp. 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 (2010). (PMLR)

    Google Scholar 

  51. Hornik, Kurt, Stinchcombe, Maxwell, White, Halbert: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  52. Psaltis, D., Sideris, A., Yamamura, A.A.: A multilayered neural network controller. IEEE Control Syst. Mag. 8(2), 17–21 (1988)

    Article  Google Scholar 

  53. Buscema, Massimo: Back propagation neural networks. Substance Use Misuse 33(2), 233–270 (1998)

    Article  Google Scholar 

  54. Karnin, E.D.: A simple procedure for pruning back-propagation trained neural networks. IEEE Trans. Neural Netw. 1(2), 239–242 (1990)

    Article  Google Scholar 

  55. Rogosin, Sergei: The role of the mittag-leffler function in fractional modeling. Mathematics 3(2), 368–381 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishwesh A. Vyawahare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kadam, P., Datkhile, G., Vyawahare, V.A. (2019). Artificial Neural Network Approximation of Fractional-Order Derivative Operators: Analysis and DSP Implementation. In: Daftardar-Gejji, V. (eds) Fractional Calculus and Fractional Differential Equations. Trends in Mathematics. Birkhäuser, Singapore. https://doi.org/10.1007/978-981-13-9227-6_6

Download citation

Publish with us

Policies and ethics