Skip to main content

Reconstructing a 3D Room from a Kinect Carrying UAV

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2018)

Abstract

This project focuses on the creation of a portable SLAM (Simultaneous Localisation and Mapping) system, which uses an Unmanned Aerial Vehicle (UAV) as the transportation medium. The main purpose of the system is to create a 3D map of the environment, while concurrently localizing itself within the map. The real world applications of this system concentrate on search and rescue scenarios. The system uses the Microsoft Kinect as its primary sensor. Within this project we utilized Visual SLAM, which is the process of using data from the Kinect sensor to calculate position. The algorithm looked at successive frames and depth estimates from the Kinect and then matched features across the images to calculate distance and stability. The work presented in this paper is approached from a practical point of view rather than purely theoretical basis. The end result is a physical prototype which is ready to be deployed in the field for further testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), pp. 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014

    Article  Google Scholar 

  2. Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly Media, Sebastopol (2008)

    Google Scholar 

  3. Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Burgard, W.: An evaluation of the RGB-D SLAM system. In: 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, pp. 1691–1696 (2012). https://doi.org/10.1109/ICRA.2012.6225199

  4. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  5. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using kinect-style depth cameras for dense 3D modelling of indoor environments. Int. J. Robot. Res. 31(5), 647–663 (2012). https://doi.org/10.1177/0278364911434148

    Article  Google Scholar 

  6. Huang, A.S., et al.: Visual odometry and mapping for autonomous flight using an RGB-D camera. In: International Symposium of Robotics Research (ISRR) (2011). https://doi.org/10.1177/0278364912455256

    Article  Google Scholar 

  7. Gannon, C.: Live test of portable SLAM prototype (2017). https://www.youtube.com/channel/UCYDCmP7B87dvna9YHEMXT3A

  8. Kim, J.H., Matson, E.T., Myung, H., Xu, P.: Robot Intelligence Technology and Applications 2012, An Edition of the Presented Papers from the 1st International Conference on Robot Intelligence Technology and Applications. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37374-9

    Google Scholar 

  9. Kristensson, O.: Supporting Blind Navigation using Depth Sensing and sonification. School of Computer Science, University of St Andrews. United Kingdom (2013). https://doi.org/10.1145/2494091.2494173

  10. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: G2o: a general framework for graph optimization. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 3607–3613. https://doi.org/10.1109/ICRA.2011.5979949

  11. Lowe, D.G.: Int. J. Comput. Vis. 60, 91 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  12. Mur-Artal, R., Tardós, J.D.: Fast relocalisation and loop closing in keyframe-based SLAM. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, pp. 846–853 (2014). https://doi.org/10.1109/ICRA.2014.6906953

  13. PrimeSense.org: Subsidiary of Apple Inc. (n.d). http://www.PrimeSense.org/

  14. ROS.org: Powering the world’s robots (n.d.). http://www.ros.org/

  15. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2564–2571 (2011). https://doi.org/10.1109/ICCV.2011.6126544

  16. Schindhelm, C.K.: Evaluating SLAM approaches for microsoft kinect. In: ICWMC 2012: The Eighth International Conference on Wireless and Mobile Communications, Siemens AG - Corporate Research and Technologies, pp. 402–407 (2012). ISBN 978-1-61208-203-5. https://www.thinkmind.org/download.php?articleid=icwmc_2012_17_40_20438

  17. Segal, A., Haehnel, D., Thrun, S.: Generalized-ICP. In: Proceedings of Robotics: Science and Systems (2009)

    Google Scholar 

  18. Taketomi, T., Uchiyama, H., Ikeda, S.: Visual SLAM algorithms: a survey from 2010 to 2016. IPSJ Trans. Comput. Vis. Appl. 9, 16 (2017). https://doi.org/10.1186/s41074-017-0027-2

  19. Valencia, R., Andrade-Cetto, J.: Path planning in belief space with pose SLAM. In: Mapping, Planning and Exploration with Pose SLAM. STAR, vol. 119, pp. 53–87. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60603-3_4

    Google Scholar 

  20. Williams, B.P., Reid, I.D.: On combining visual SLAM and visual Odometry. In: Proceedings of International Conference on Robotics and Automation, ICRA 2010, pp. 3494–3500 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleni Mangina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mangina, E., Gannon, C., O’Keeffe, E. (2019). Reconstructing a 3D Room from a Kinect Carrying UAV. In: Santosh, K., Hegadi, R. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2018. Communications in Computer and Information Science, vol 1035. Springer, Singapore. https://doi.org/10.1007/978-981-13-9181-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9181-1_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9180-4

  • Online ISBN: 978-981-13-9181-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics