Skip to main content

Teaching Green Analytical and Synthesis Chemistry: Performing Laboratory Experiments in a Greener Way

  • Chapter
  • First Online:
Green Analytical Chemistry

Abstract

Our future challenges in resource, environmental and societal sustainability demand efficient and benign-by-design scientific technologies for working with chemical processes and products. In this chapter, we have considered the major aspects of green analytical and synthetic chemistry as a new paradigm and its integration with higher education course curriculum. Teaching green analytical chemistry must be focused on analytical parameters and practices more than on the incorporation of the so-called green parameters to the basic analytical properties. Thus accuracy, representativeness, traceability, sensitivity and selectivity in the renewed paradigmatic chemistry have been complemented and not excluded by additional considerations on the safety of operators and environment. Reduction of risks, reagents, energy and solvent required the search for new innocuous compounds, the highest level of potential information about the samples and measurements and the responsibility of the laboratories about the elimination and/or reduction and decontamination of the analytical wastes. With this end in view, this chapter complies 16 green laboratory experiments which will be useful to the students and the teachers of chemistry alike. The economical consideration of the greening efforts in method development is another very important aspect of green chemistry, and it will be the major reason for extensive practice in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Das AK, Chakraborty R (2017) Microwave-enhanced speciation analysis of environmental samples. Curr Microw Chem 4:5–15

    Article  CAS  Google Scholar 

  2. Dutta S, Das AK (2012) Green analytical laboratory experiments. In: de la Guardia M, Garrigues S (eds) Handbook of green analytical chemistry, 1st edn. Wiley, Chichester

    Chapter  Google Scholar 

  3. de la Guardia M, Garrigues S (2012) Handbook of green analytical chemistry, 1st edn. Wiley, Chichester

    Book  Google Scholar 

  4. Das AK (2014) Elements of green chemistry with green laboratory experiments. Readers Service, Kolkata

    Google Scholar 

  5. Wals AEJ (2010) Mirroring, gestalt witching and transformative social learning. Int J Sustain High Ed 11:380–390

    Article  Google Scholar 

  6. Singh MM, Szafran Z, Pike RM (1999) Microscale chemistry and green chemistry: complementary pedagogies. J Chem Ed 76:1684–1686

    Article  CAS  Google Scholar 

  7. Louw W (2013) Green curriculum: sustainable learning at a higher education institution. Int Rev Res Open Dist Learn 14(1):1–14

    Google Scholar 

  8. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  9. Cue BW Jr (2015) Green chemistry principle #1 ACS, http://www.acs.org/content/acs/en/greenchemistry/what.is.green.chemistry/principles/gc.pri. Accessed on 16.05.2018

  10. Constable D (2014) Green chemistry principle #6, ACS, http://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/principles/gc.prin. Accessed on 18.05.2018

  11. Anastas ND (2014) Green chemistry principle #4, ACS, http://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/principles/gc.prin. Accessed on 18.05.2018

  12. Xiao J (2012) Merging organocatalysis with transition metal catalysis: highly stereoselective α-alkylation of aldehydes. Org Lett 14:1716–1719

    Article  CAS  Google Scholar 

  13. Jimenez-Gonzalez C (2014) Green chemistry principle #5, ACS, http://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/principles/gc.prin. Accessed on 18.05.2018

  14. Dunn PJ (2014) Green chemistry principle #8, ACS, http://www.acs.org/content/acs/en/greenchemistry/about/principles/gr. Accessed on 18.05.2018

  15. Wool R (2014) Green chemistry principle #7, ACS, http://www.acs.org/content/acs/en/greenchemistry/about/principles/gr. Accessed on 18.05.2018

  16. United Nations Global Compact (2011). The University of South Africa communication on progress. Unisa Press, Pretoria, p 7

    Google Scholar 

  17. Varma RS (2014) Greener and sustainable chemistry. Appl Sci 4:493–497

    Article  Google Scholar 

  18. Koel M, Kaljurand M (2010) Green analytical chemistry. RSC Publishing, UK

    Google Scholar 

  19. Das AK, de la Guardia M (2009) Greener the spectroscopy. Spectrosc Lett 42:275–276

    Article  CAS  Google Scholar 

  20. Korthou H, Verpoorte R (2007) Vanilla, flavours and fragrances. Springer, Berlin

    Google Scholar 

  21. Bandyopadhyay D, Banik BK (2012) Bismuth nitrate-induced microwave-assisted expeditious synthesis of vanillin from curcumin. Org Med Chem Lett 2:15–18

    Article  Google Scholar 

  22. Akaiyama T, Suzuki A, Fuchibe K (2005) Mannich-type reaction promoted by an ionic liquid. Synlett 1024–1026

    Google Scholar 

  23. Ranu BC, Jana R (2005) Catalysis by ionic liquid: A green protocol for the stereoselective debromination of vicinal-dibromides by [pmIm]BF4 under microwave irradiation. J Org Chem 70:8621–8624

    Article  CAS  Google Scholar 

  24. Srinivas C, Kumar CNSSP, Rao VJ, Palaniappan S (2007) Efficient, convenient and reusable polyaniline-sulfate salt catalyst for the synthesis of quinoxaline derivatives. J Mol Catal A: Chem 265:227–230

    Article  CAS  Google Scholar 

  25. Bachhav HM, Bhagat SB, Telvekar VK (2011) Efficient protocol for the synthesis of quinoxaline, benzoxazole and benzimidazole derivatives using glycerol as green solvent. Tetrahedron Lett 52:5697–5701

    Article  CAS  Google Scholar 

  26. Rogers RD, Bond AH, Bauer CB (1993) Metal ion separation in polyethylene glycol based aqueous biphasic systems. Sep Sci Technol 28:1091–1126

    Article  Google Scholar 

  27. Lahiri S, Roy K (2009) A green approach for sequential extraction of heavy metals from Li irradiated Au target. J Radioanal Nucl Chem 281:531–534

    Article  CAS  Google Scholar 

  28. Sato T, Watanabe H, Suzuki H (1990) Liquid-liquid extraction of molybdenum (VI) from aqueous solutions by TBP and TOPO. Hydrometallurgy 23:297–308

    Article  CAS  Google Scholar 

  29. Mishra VG, Thakur UK, Shah DJ, Gupta NK, Jeyakumar S, Tomar BS, Ramakumar KL (2015) Direct separation of molybdenum from solid uranium matrices employing pyrohydrolysis, a green separation method, and its determination by ion chromatography. Anal Chem 87:10728–10733

    Article  CAS  Google Scholar 

  30. Mukaiyama T (1982) The directed aldol reaction. In: Dauben WG (ed) Organic reactions, vol 28, Wiley, New York, pp 203–331

    Google Scholar 

  31. Motiur Rahman AFM, Ali R, Jahng Y, Kadi AA (2012) A facile solvent free Claisen-Schmidt reaction: synthesis of α,α′-bis-(substituted-benzylidene)cycloalkanones and α,α′-bis-(substituted-alkylidene)cycloalkanones. Molecules 17:571–583

    Article  Google Scholar 

  32. Lindsey JS, Schreiman IC, Hsu HC, Kearney PC, Marguerettaz AM (1987) Rothemund and Adler-Longo reactions revisited: synthesis of tetraphenylporphyrins under equilibrium conditions. J Org Chem 52:827–836

    Article  CAS  Google Scholar 

  33. Warner MG, Succaw GL, Hutchison JE (2001) Solventless syntheses of mesotetraphenylporphyrin: new experiments for a greener organic chemistry laboratory curriculum. Green Chem 3:267–270

    Article  CAS  Google Scholar 

  34. Zeegers P (1993) Nitration of phenols: a two-phase system. J Chem Educ 70:1036

    Article  CAS  Google Scholar 

  35. Yadav U, Mande H, Ghalsasi P (2012) Nitration of phenols using Cu(NO3)2: green chemistry laboratory experiment. J Chem Educ 89:268–270

    Article  CAS  Google Scholar 

  36. Daştan A, Kulkarni A, Török B (2012) Environmentally benign synthesis of heterocyclic compounds by combined microwave—assisted heterogeneous catalytic approaches. Green Chem 14:17–37

    Article  Google Scholar 

  37. Kokel A, Török B (2017) Microwave-assisted solid phase diazotation: a method for the environmentally benign synthesis of benzotriazoles. Green Chem 19:2515–2519

    Article  CAS  Google Scholar 

  38. Khan AT, Choudhry LH, Parvin T, Ali MA (2006) CeCl3·7H2O: an efficient and reusable catalyst for the preparation of β–acetamido carbonyl compounds by multicomponent reactions. Tetrahedron Lett 47:8137–8141

    Article  CAS  Google Scholar 

  39. Dintzner MR, Maresh JJ, Kinzie CR, Arena AF, Speltz T (2012) A research-based undergraduate organic laboratory project: investigation of a one-pot, multicomponent, environmentally friendly Prins–Friedel–Crafts-type reaction. J Chem Educ 89:265–267

    Article  CAS  Google Scholar 

  40. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, GaoJ X, Gou LS, Hunyadi E, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly and optical applications. J Phys Chem B 109:13857–13870

    Article  CAS  Google Scholar 

  41. Sharma RK, Gulati S, Mehta S (2012) Preparation of gold nanoparticles using tea: a green chemistry experiment. J Chem Educ 89:1316–1318

    Article  CAS  Google Scholar 

  42. Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalyphaindica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B Biointer 76:50–56

    Article  CAS  Google Scholar 

  43. Ahmed S, Ikram S (2015) Silver nanoparticles: one pot green synthesis using Terminalia arjuna extract for biological application. J Nanomed Nanotechnol 6:309–313

    Google Scholar 

  44. Cava-Montesinos P, Rodenas-Torralba E, Morales-Rubio A, Cervera ML, de la Guardia M (2004) Cold vapor atomic fluorescence determination of mercury in milk slurry sampling using multicommutation. Anal Chim Acta 506:145–153

    Article  CAS  Google Scholar 

  45. Armenta S, de la Guardia M (2011) Determination of mercury in milk by cold vapor atomic fluorescence: a green analytical chemistry laboratory experiment. J Chem Educ 88:488–491

    Article  CAS  Google Scholar 

  46. Bendich A, Machlin LJ, Scandura O, Burton GW, Wayner DDM (1986) The antioxidant role of vitamin C. Adv Free Radic Biol Med 2:419–425

    Article  CAS  Google Scholar 

  47. Kleszczewski T, Kleszczewska E (2002) Flow injection spectrophotometric determination of l-ascorbic acid in biological matters. J Pharm Biomed Anal 29:755–759

    Article  CAS  Google Scholar 

  48. Arthur CL, Pawliszyn J (1990) Solid phase micro-extraction with thermal desorption using fused silica optical fibres. Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  49. Arain SA, Kazi TG, Afridi HI, Ullah N, Arain MS, Panhwar AH (2015) Development of miniaturized solid phase microextraction of copper in serum using a micropipette tip in-syringe system combined with micro sampling flame atomic absorption spectrometry. Anal Method 7:3431–3437

    Article  CAS  Google Scholar 

  50. Fresenius W, Quentin KE, Scheneider W (eds) (1988) Water analysis: a practical guide to physico-chemical, chemical and microbiological water examination and quality assurance. Springer, Berlin

    Google Scholar 

  51. Badr IHA, Hassan HH, Hamed E, Abdel-Aziz AM (2017) Sensitive and green method for determination of chemical oxygen demand using a nano-copper based electrochemical sensor. Electroanalysis 29:2401–2409

    Article  CAS  Google Scholar 

  52. del Baldo M, Baldarelli M-G (2017) Educating for sustainability: perspectives and critical note on accounting scholars’ role in higher education. Sci Ann Econ Bus 64:411–422. https://doi.org/10.1515/saeb-2017-0032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arabinda Kumar Das or Miguel de la Guardia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, A.K., Chakraborty, R., de la Guardia, M. (2019). Teaching Green Analytical and Synthesis Chemistry: Performing Laboratory Experiments in a Greener Way. In: Płotka-Wasylka, J., Namieśnik, J. (eds) Green Analytical Chemistry. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9105-7_3

Download citation

Publish with us

Policies and ethics