Skip to main content

Modulation of Oxidative Stress in Heart Disease by Uncoupling Proteins

  • Chapter
  • First Online:
Modulation of Oxidative Stress in Heart Disease

Abstract

According to “free-radical theory” of disease, Reactive Oxygen Species (ROS) play a key role in the pathogenesis of several diseases including cardiovascular disease. When the balance between production of free radicals and antioxidant capacity of the cardiac cells is altered due to pathophysiological conditions, oxidative stress is induced. Oxidative stress has been linked to the development of ischemic heart disease, atherosclerosis, congestive heart failure, ischemic-reperfusion injury, and vascular endothelial dysfunction. In this context, antioxidant supplementation would have a positive effect on cardiovascular diseases. However, several clinical trials over the past decades employed different strategies of antioxidant therapies which have failed to achieve favorable results in ameliorating or preventing cardiovascular diseases. Much less attention has been paid to the modulation of ROS production, despite the fact that prevention, rather than cure, would appear to be a logic approach to attenuate the oxidative damage. This chapter intends to highlight the mechanisms of oxidative stress modulation – by Natural or induced mitochondrial uncoupling respiration – in regulating ROS production and its significance in cardiovascular pathophysiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mootha VK, Arai AE, Balaban RS (1997) Maximum oxidative phosphorylation capacity of the mammalian heart. Am J Phys Heart Circ Phys 272(2):H769–H775

    CAS  Google Scholar 

  2. Brand MD, Esteves TC (2005) Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab 2(2):85–93

    Article  CAS  PubMed  Google Scholar 

  3. NICHOLLS DG (1974) The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur J Biochem 50(1):305–315

    Article  CAS  PubMed  Google Scholar 

  4. Rolfe DF et al (1999) Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR. Am J Phys Cell Phys 276(3):C692–C699

    CAS  Google Scholar 

  5. MacLellan JD et al (2005) Physiological increases in uncoupling protein 3 augment fatty acid oxidation and decrease reactive oxygen species production without uncoupling respiration in muscle cells. Diabetes 54(8):2343–2350

    Article  CAS  PubMed  Google Scholar 

  6. Miller D, MacFarlane N (1995) Intracellular effects of free radicals and reactive oxygen species in cardiac muscle. J Hum Hypertens 9(6):465–473

    CAS  PubMed  Google Scholar 

  7. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Phys Lung Cell Mol Phys 279(6):L1005–L1028

    CAS  Google Scholar 

  8. Cannon B, Hedin A, Nedergaard J (1982) Exclusive occurrence of thermogenin antigen in brown adipose tissue. FEBS Lett 150(1):129–132

    Article  CAS  PubMed  Google Scholar 

  9. Akhmedov AT, Rybin V, Marín-García J (2015) Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Fail Rev 20(2):227–249

    Article  CAS  PubMed  Google Scholar 

  10. Schrauwen P (2004) The role of uncoupling protein 3 in fatty acid metabolism: protection against lipotoxicity? Proc Nutr Soc 63(2):287–292

    Article  CAS  PubMed  Google Scholar 

  11. Cardaci S, Filomeni G, Ciriolo MR (2012) Redox implications of AMPK-mediated signal transduction beyond energetic clues. J Cell Sci 125(9):2115–2125

    CAS  PubMed  Google Scholar 

  12. Putman CT et al (2003) AMPK activation increases uncoupling protein-3 expression and mitochondrial enzyme activities in rat muscle without fibre type transitions. J Physiol 551(1):169–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xie Z et al (2008) Up-regulation of mitochondrial uncoupling protein-2 by the AMP-activated protein kinase in endothelial cells attenuates oxidative stress in diabetes. Diabetes 57:3222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. DIRAISON F et al (2004) Over-expression of sterol-regulatory-element-binding protein-1c (SREBP1c) in rat pancreatic islets induces lipogenesis and decreases glucose-stimulated insulin release: modulation by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). Biochem J 378(3):769–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kozak UC et al (1994) An upstream enhancer regulating brown-fat-specific expression of the mitochondrial uncoupling protein gene. Mol Cell Biol 14(1):59–67

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Reddy JK, Krishnakantha T (1975) Hepatic peroxisome proliferation: induction by two novel compounds structurally unrelated to clofibrate. Science 190(4216):787–789

    Article  CAS  PubMed  Google Scholar 

  17. Lehmann JM et al (1997) Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 272(6):3406–3410

    Article  CAS  PubMed  Google Scholar 

  18. YOUNG ME et al (2001) Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor α in the adult rodent heart. FASEB J 15(3):833–845

    Article  CAS  PubMed  Google Scholar 

  19. Gilde AJ et al (2003) Peroxisome proliferator-activated receptor (PPAR) α and PPARβ/δ, but not PPARγ, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res 92(5):518–524

    Article  CAS  PubMed  Google Scholar 

  20. Barger PM, Kelly DP (2000) PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med 10(6):238–245

    Article  CAS  PubMed  Google Scholar 

  21. Murray AJ et al (2004) Uncoupling proteins in human heart. Lancet 364(9447):1786–1788

    Article  CAS  PubMed  Google Scholar 

  22. Williamson J, Krebs H (1961) Acetoacetate as fuel of respiration in the perfused rat heart. Biochem J 80(3):540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Murray AJ et al (2005) Plasma free fatty acids and peroxisome proliferator–activated receptor α in the control of myocardial uncoupling protein levels. Diabetes 54(12):3496–3502

    Article  CAS  PubMed  Google Scholar 

  24. Parameswaran N, Patial S (2010) Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr 20(2):87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Busquets Sl et al (1998) In the rat, tumor necrosis factor α administration results in an increase in both UCP2 and UCP3 mRNAs in skeletal muscle: a possible mechanism for cytokine-induced thermogenesis? FEBS Lett 440(3):348–350

    Article  CAS  PubMed  Google Scholar 

  26. Lee FJ et al (1999) Tumor necrosis factor increases mitochondrial oxidant production and induces expression of uncoupling protein-2 in the regenerating rat liver. Hepatology 29(3):677–687

    Article  CAS  PubMed  Google Scholar 

  27. Kwon HJ et al (2003) Case reports of heart failure after therapy with a tumor necrosis factor antagonist. Ann Intern Med 138(10):807–811

    Article  PubMed  Google Scholar 

  28. Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145(3):341–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chang M-C et al (2017) Lysophosphatidylcholine induces cytotoxicity/apoptosis and IL-8 production of human endothelial cells: Related mechanisms. Oncotarget 8(63):106177

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lee K-U et al (2005) Effects of recombinant adenovirus-mediated uncoupling protein 2 overexpression on endothelial function and apoptosis. Circ Res 96(11):1200–1207

    Article  CAS  PubMed  Google Scholar 

  31. Alves-Guerra JBMM et al. Protective Role of Uncoupling Protein 2 in Atherosclerosis

    Google Scholar 

  32. Braganza D, Bennett M (2001) New insights into atherosclerotic plaque rupture. Postgrad Med J 77(904):94–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jennings RB, Ganote CE (1974) Structural changes in myocardium during acute ischemia. Circ Res 35(3_supplement):III-156–III-172

    Article  Google Scholar 

  34. Rechavia E et al (1995) Hyperdynamic performance of remote myocardium in acute infarction: Correlation between regional contractile function and myocardial perfusion. Europ Heart J 16(12):1845–1850

    Article  CAS  Google Scholar 

  35. Almsherqi ZA et al (2006) Reduced cardiac output is associated with decreased mitochondrial efficiency in the non-ischemic ventricular wall of the acute myocardial-infarcted dog. Cell Res 16(3):297

    Article  CAS  PubMed  Google Scholar 

  36. Murray AJ et al (2008) Increased mitochondrial uncoupling proteins, respiratory uncoupling and decreased efficiency in the chronically infarcted rat heart. J Mol Cell Cardiol 44(4):694–700

    Article  CAS  PubMed  Google Scholar 

  37. Gottlieb RA et al (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94(4):1621–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Almsherqi ZA et al (2006) Displacement of the beating heart induces an immediate and sustained increase in myocardial reactive oxygen species. Circ J 70(9):1226–1228

    Article  CAS  PubMed  Google Scholar 

  39. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74(5):1124–1136

    Article  CAS  PubMed  Google Scholar 

  40. Liu Y et al (2009) Both ischemic preconditioning and ghrelin administration protect hippocampus from ischemia/reperfusion and upregulate uncoupling protein-2. BMC Physiol 9(1):17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Bienengraeber M, Ozcan C, Terzic A (2003) Stable transfection of UCP1 confers resistance to hypoxia/reoxygenation in a heart-derived cell line. J Mol Cell Cardiol 35(7):861–865

    Article  CAS  PubMed  Google Scholar 

  42. Organisation WH (2017) The top 10 causes of death

    Google Scholar 

  43. Misaka T et al (2018) FKBP8 protects the heart from hemodynamic stress by preventing the accumulation of misfolded proteins and endoplasmic reticulum-associated apoptosis in mice. J Mol Cell Cardiol 114:93–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cappetta D et al (2017) Effects of ranolazine in a model of doxorubicin-induced left ventricle diastolic dysfunction. Br J Pharmacol 174(21):3696–3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bugger H et al (2011) Uncoupling protein downregulation in doxorubicin-induced heart failure improves mitochondrial coupling but increases reactive oxygen species generation. Cancer Chemother Pharmacol 67(6):1381–1388

    Article  CAS  PubMed  Google Scholar 

  46. Jiménez-Jiménez J et al (2006) Fatty acid activation of the uncoupling proteins requires the presence of the central matrix loop from UCP1. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1757(9–10):1292–1296

    Article  CAS  Google Scholar 

  47. Teshima Y et al (2003) Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res 93(3):192–200

    Article  CAS  PubMed  Google Scholar 

  48. Perrino C et al (2013) Genetic deletion of uncoupling protein 3 exaggerates apoptotic cell death in the ischemic heart leading to heart failure. J Am Heart Assoc 2(3):e000086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Gaussin V et al (2003) Common Genomic Response in Different Mouse Models of β-Adrenergic–Induced Cardiomyopathy. Circulation 108(23):2926–2933

    Article  CAS  PubMed  Google Scholar 

  50. Hang T et al (2007) Apoptosis and expression of uncoupling protein-2 in pressure overload-induced left ventricular hypertrophy. Acta Cardiol 62(5):461–465

    Article  PubMed  Google Scholar 

  51. Ji X-B et al (2015) Inhibition of uncoupling protein 2 attenuates cardiac hypertrophy induced by transverse aortic constriction in mice. Cell Physiol Biochem 36(5):1688–1698

    Article  CAS  PubMed  Google Scholar 

  52. Murakami K et al (2002) Perindopril effect on uncoupling protein and energy metabolism in failing rat hearts. Hypertension 40(3):251–255

    Article  CAS  PubMed  Google Scholar 

  53. Sack MN (2006) Mitochondrial depolarization and the role of uncoupling proteins in ischemia tolerance. Cardiovasc Res 72(2):210–219

    Article  CAS  PubMed  Google Scholar 

  54. Hesselink MK, Schrauwen P (2005) Uncoupling proteins in the failing human heart: friend or foe? Lancet 365(9457):385–386

    Article  PubMed  Google Scholar 

  55. Russell RR et al (2004) AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest 114(4):495–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pierelli G et al (2017) Uncoupling protein 2: a key player and a potential therapeutic target in vascular diseases. Oxidative Med Cell Longev 2017:1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Miss Teresa Cheng for her artwork presented in Figs. 1.1 and 1.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakaria A. Almsherqi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Almsherqi, Z.A., Li, B.Y.H., Zhou, Y., McLachlan, C.S. (2019). Modulation of Oxidative Stress in Heart Disease by Uncoupling Proteins. In: Chakraborti, S., Dhalla, N., Dikshit, M., Ganguly, N. (eds) Modulation of Oxidative Stress in Heart Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-8946-7_1

Download citation

Publish with us

Policies and ethics