Skip to main content

Water Sensing in Plants

  • Chapter
  • First Online:
Sensory Biology of Plants

Abstract

Water is a key factor in plant life. Therefore, reaching and holding water is a crucial part in plant survival. Plants sense water through a set of sensors which includes sensors for water activity (potential), for specific components of water potential, or for specific solutes contributing to water potential and for hydraulic signals. While these sensors are common to different plants and other organisms, their functions and modes of action are yet far from being understood. It is also unknown how these sensing mechanisms are linked to cellular and whole-plant responses to changes in water status in the soil or in the atmosphere. Advanced technologies that would provide means for single-cell physiological manipulations together with high-throughput noninvasive real-time monitoring systems of shoots and roots and advanced biochemistry and structural studies at atomic resolution of sensor proteins and protein complexes are imperative for understanding water sensing by plants.

This water was indeed a different thing from ordinary nourishment. Its sweetness was born of the walk under the stars, the song of the pulley, the effort of my arms. It was good for the heart, like a present. The Little Prince (Antoine de Saint-Exupéry).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad I, Devonshire J, Mohamed R, Schultze M, Maathuis FJ (2016) Overexpression of the potassium channel TPKb in small vacuoles confers osmotic and drought tolerance to rice. New Phytol 209:1040–1048

    Article  CAS  PubMed  Google Scholar 

  • Amien S, Kliwer I, Márton ML, Debener T, Geiger D, Becker D, Dresselhaus T (2010) Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1. PLoS Biol 8:e1000388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson CM, Wagner TA, Perret M, He ZH, He D, Kohorn BD (2001) WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix. Plant Mol Biol 47:197–206

    Google Scholar 

  • Arnadóttir J, Chalfie M (2010) Eukaryotic mechanosensitive channels. Annu Rev Biophys 39:111–137

    Article  PubMed  CAS  Google Scholar 

  • Auler PA, do Amaral MN, Rodrigues GDS, Benitez LC, da Maia LC, Souza GM, Braga EJB (2017) Molecular responses to recurrent drought in two contrasting rice genotypes. Planta 246:899–914

    Article  CAS  PubMed  Google Scholar 

  • Balagué C, Gouget A, Bouchez O, Souriac C, Haget N, Boutet-Mercey S, Govers F, Roby D, Canut H (2017) The Arabidopsis thaliana lectin receptor kinase LecRK-I.9 is required for full resistance to Pseudomonas syringae and affects jasmonate signalling. Mol Plant Pathol 18:937–948

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Ramegowda V, Kumar A, Pereira A (2016) Plant adaptation to drought stress. F1000 Res 5:1554

    Article  CAS  Google Scholar 

  • Bentrup FW (2017) Water ascent in trees and lianas: the cohesion-tension theory revisited in the wake of Otto Renner. Protoplasma 254:627–633

    Article  CAS  PubMed  Google Scholar 

  • Blum A (2017) Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ 40:4–10

    Article  CAS  PubMed  Google Scholar 

  • Buckley TN (2005) The control of stomata by water balance. New Phytol 168(2):275–292

    Article  CAS  PubMed  Google Scholar 

  • Buckley TN, Sack L, Farquhar GD (2017) Optimal plant water economy. Plant Cell Environ 40:881–896

    Article  CAS  PubMed  Google Scholar 

  • Chefdor F, Bénédetti H, Depierreux C, Delmotte F, Morabito D, Carpin S (2006) Osmotic stress sensing in Populus: components identification of a phosphorelay system. FEBS Lett 580:77–81

    Article  CAS  PubMed  Google Scholar 

  • Choi WG, Miller G, Wallace I, Harper J, Mittler R, Gilroy S (2017) Orchestrating rapid long-distance signaling in plants with Ca2+, ROS and electrical signals. Plant J 90:698–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christmann A, Grill E, Huang J (2013) Hydraulic signals in long-distance signaling. Curr Opin Plant Biol 16:293–300

    Article  CAS  PubMed  Google Scholar 

  • Clark RT, MacCurdy RB, Jung JK, Shaff JE, McCouch SR, Aneshansley DJ, Kochian LV (2011) Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol 156:455–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole ES, Mahall BE (2006) A test for hydrotropic behavior by roots of two coastal dune shrubs. New Phytol 172:358–368

    Article  PubMed  Google Scholar 

  • Cook GD, Dixon JR, Leopold AC (1964) Transpiration: its effects on plant leaf temperature. Science 144:546–547

    Article  CAS  PubMed  Google Scholar 

  • Darwin C, Darwin F (1880) The power of movement in plants. John Murray, London

    Google Scholar 

  • De Schepper V, De Swaef T, Bauweraerts I, Steppe K (2013) Phloem transport: a review of mechanisms and controls. J Exp Bot 64:4839–4850

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V (2014) Mechanisms and physiological roles of K+ efflux from root cells. J Plant Physiol 171:696–707

    Article  CAS  PubMed  Google Scholar 

  • Dietrich D, Pang L, Kobayashi A, Fozard JA, Boudolf V, Bhosale R, Antoni R, Nguyen T, Hiratsuka S, Fujii N, Miyazawa Y, Bae TW, Wells DM, Owen MR, Band LR, Dyson RJ, Jensen OE, King JR, Tracy SR, Sturrock CJ, Mooney SJ, Roberts JA, Bhalerao RP, Dinneny JR, Rodriguez PL, Nagatani A, Hosokawa Y, Baskin TI, Pridmore TP, De Veylder L, Takahashi H, Bennett MJ (2017) Root hydrotropism is controlled via a cortex-specific growth mechanism. Nat Plants 8:17057

    Article  CAS  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  CAS  PubMed  Google Scholar 

  • Falik O, Mordoch Y, Ben-Natan D, Vanunu M, Goldstein O, Novoplansky A (2012) Plant responsiveness to root-root communication of stress cues. Ann Bot 110:271–280

    Article  PubMed  PubMed Central  Google Scholar 

  • Feller U (2016) Drought stress and carbon assimilation in a warming climate: reversible and irreversible impacts. J Plant Physiol 203:84–94

    Article  CAS  PubMed  Google Scholar 

  • Feng D, Huang X, Liu Y, Willison JH (2016) Growth and changes of endogenous hormones of mulberry roots in a simulated rocky desertification area. Environ Sci Pollut Res Int 23:11171–11180

    Article  CAS  PubMed  Google Scholar 

  • Gagliano M, Grimonprez M, Depczynski M, Renton M (2017) Tuned in: plant roots use sound to locate water. Oecologia 184:151–160

    Article  PubMed  Google Scholar 

  • Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–22230

    Article  PubMed  Google Scholar 

  • Ghatak A, Chaturvedi P, Weckwerth W (2017) Cereal crop proteomics: systemic analysis of crop drought stress responses towards marker-assisted selection breeding. Front Plant Sci 8:757

    Article  PubMed  PubMed Central  Google Scholar 

  • Giarola V, Hou Q, Bartels D (2017) angiosperm plant desiccation tolerance: hints from transcriptomics and genome sequencing. Trends Plant Sci 22:705–717

    Article  CAS  PubMed  Google Scholar 

  • Gorgolewski S, Rozej B (2001) Evidence for electrotropism in some plant species. Adv Space Res 28:633–638

    Article  CAS  PubMed  Google Scholar 

  • Gouget A, Senchou V, Govers F, Sanson A, Barre A, Rougé P, Pont-Lezica R, Canut H (2006) Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis. Plant Physiol 140:81–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ham BK, Lucas WJ (2014) The angiosperm phloem sieve tube system: a role in mediating traits important to modern agriculture. J Exp Bot 65:1799–1816

    Article  CAS  PubMed  Google Scholar 

  • Hamilton ES, Jensen GS, Maksaev G, Katims A, Sherp AM, Haswell ES (2015) Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science 350:438–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harkenrider M, Sharma R, De Vleesschauwer D, Tsao L, Zhang X, Chern M, Canlas P, Zuo S, Ronald PC (2016) Overexpression of rice wall-associated kinase 25 (OsWAK25) alters resistance to bacterial and fungal pathogens. PLoS One 11:e0147310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haswell ES, Phillips R, Rees DC (2011) Mechanosensitive channels: what can they do and how do they do it? Structure 19:1356–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Héricourt F, Chefdor F, Bertheau L, Tanigawa M, Maeda T, Guirimand G, Courdavault V, Larcher M, Depierreux C, Bénédetti H, Morabito D, Brignolas F, Carpin S (2013) Characterization of histidine-aspartate kinase HK1 and identification of histidine phosphotransfer proteins as potential partners in a populus multistep phosphorelay. Physiol Plant 149:188–199

    Article  PubMed  CAS  Google Scholar 

  • Hill AE, Shachar-Hill Y (2015) Are aquaporins the missing transmembrane osmosensors? J Membr Biol 248:753–765

    Article  CAS  PubMed  Google Scholar 

  • Hussain SS, Kayani MA, Amjad M (2011) Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol Prog 27:297–306

    Article  CAS  PubMed  Google Scholar 

  • Jahnke S, Menzel MI, van Dusschoten D, Roeb GW, Bühler J, Minwuyelet S, Blümler P, Temperton VM, Hombach T, Streun M, Beer S, Khodaverdi M, Ziemons K, Coenen HH, Schurr U (2009) Combined MRI-PET dissects dynamic changes in plant structures and functions. Plant J 59:634–644

    Article  CAS  PubMed  Google Scholar 

  • Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamano S, Kume S, Iida K, Lei KJ, Nakano M, Nakayama Y, Iida H (2015) Transmembrane topologies of Ca2+-permeable mechanosensitive channels MCA1 and MCA2 in Arabidopsis thaliana. J Biol Chem 290:30901–30909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohorn BD, Kohorn SL (2012) The cell wall-associated kinases, WAKs, as pectin receptors. Front Plant Sci 3:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krieger G, Shkolnik D, Miller G, Fromm H (2016) reactive oxygen species tune root tropic responses. Plant Physiol 172:1209–1220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar MN, Jane WN, Verslues PE (2013) Role of the putative osmosensor Arabidopsis histidine kinase1 in dehydration avoidance and low-water-potential response. Plant Physiol 161:942–953

    Article  CAS  PubMed  Google Scholar 

  • Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654

    Article  CAS  PubMed  Google Scholar 

  • Kurusu T, Iida H, Kuchitsu K (2012a) Roles of a putative mechanosensitive plasma membrane Ca2+-permeable channel OsMCA1 in generation of reactive oxygen species and hypo-osmotic signaling in rice. Plant Signal Behav 7:796–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurusu T, Nishikawa D, Yamazaki Y, Gotoh M, Nakano M, Hamada H, Yamanaka T, Iida K, Nakagawa Y, Saji H, Shinozaki K, Iida H, Kuchitsu K (2012b) Plasma membrane protein OsMCA1 is involved in regulation of hypo-osmotic shock-induced Ca2+ influx and modulates generation of reactive oxygen species in cultured rice cells. BMC Plant Biol 12:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurusu T, Yamanaka T, Nakano M, Takiguchi A, Ogasawara Y, Hayashi T, Iida K, Hanamata S, Shinozaki K, Iida H, Kuchitsu K (2012c) Involvement of the putative Ca2+-permeable mechanosensitive channels, NtMCA1 and NtMCA2, in Ca2+ uptake, Ca2+-dependent cell proliferation and mechanical stress-induced gene expression in tobacco (Nicotiana tabacum) BY-2 cells. J Plant Res 125:555–568

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha HR, Singla-Pareek SL, Pareek A (2014) Putative osmosensor–OsHK3b–a histidine kinase protein from rice shows high structural conservation with its ortholog AtHK1 from Arabidopsis. J Biomol Struct Dyn 32:1318–1332

    Article  CAS  PubMed  Google Scholar 

  • Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochian LV (2000) Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot 51:71–79

    Article  CAS  PubMed  Google Scholar 

  • Lee CP, Maksaev G, Jensen GS, Murcha MW, Wilson ME, Fricker M, Hell R, Haswell ES, Millar AH, Sweetlove LJ (2016) MSL1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress. Plant J 88:809–825.

    Article  CAS  PubMed  Google Scholar 

  • Louf JF, Guéna G, Badel E, Forterre Y (2017) Universal poroelastic mechanism for hydraulic signals in biomimetic and natural branches. Proc Natl Acad Sci USA 114:11034–11039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maathuis FJM (2011) Vacuolar two-pore K+ channels act as vacuolar osmosensors. New Phytol 191:81–91

    Article  CAS  Google Scholar 

  • MacRobbie EA (2006) Osmotic effects on vacuolar ion release in guard cells. Proc Natl Acad Sci USA 103:1135–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmood NA, Biemans-Oldehinkel E, Patzlaff JS, Schuurman-Wolters GK, Poolman B (2006) Ion specificity and ionic strength dependence of the osmoregulatory ABC transporter OpuA. J Biol Chem 281:29830–29839

    Article  CAS  PubMed  Google Scholar 

  • Marcum H, Moore R (1990) Influence of electrical fields and asymmetric application of mucilage on curvature of primary roots of zea mays. Am J Bot 77:446–452

    Article  CAS  PubMed  Google Scholar 

  • Mathur J (2006) Local interactions shape plant cells. Curr Opin Cell Biol 18:40–46

    Article  CAS  PubMed  Google Scholar 

  • Mishra RC, Ghosh R, Bae H (2016) Plant acoustics: in the search of a sound mechanism for sound signaling in plants. J Exp Bot 67:4483–4494

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T, Kishigami A, Sokabe M, Kojima I, Sato S, Kato T, Tabata S, Iida K, Terashima A, Nakano M, Ikeda M, Yamanaka T, Iida H (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci USA 104:3639–3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nalepa A, Malferrari M, Lubitz W, Venturoli G, Möbius K, Savitsky A (2017) Local water sensing: water exchange in bacterial photosynthetic reaction centers embedded in a trehalose glass studied using multiresonance EPR. Phys Chem Chem Phys 19:28388–28400

    Article  CAS  PubMed  Google Scholar 

  • Ota IM, Varshavsky A (1993) A yeast protein similar to bacterial two-component regulators. Science 262:566–569

    Article  CAS  PubMed  Google Scholar 

  • Peyronnet R, Tran D, Girault T, Frachisse JM (2014) Mechanosensitive channels: feeling tension in a world under pressure. Front Plant Sci 5:558

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramthun AD (2017) Plant electro-tropism. Water J 8:47–106

    Google Scholar 

  • Rellán-Álvarez R, Lobet G, Lindner H, Pradier PL, Sebastian J, Yee MC, Geng Y, Trontin C, LaRue T, Schrager-Lavelle A, Haney CH, Nieu R, Maloof J, Vogel JP, Dinneny JR (2015) GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems. eLife 4:–e07597

    Google Scholar 

  • Rogers ED, Monaenkova D, Mijar M, Nori A, Goldman DI, Benfey PN (2016) X-Ray computed tomography reveals the response of root system architecture to soil texture. Plant Physiol 171:2028–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sade N, Gebremedhin A, Moshelion M (2012) Risk-taking plants: anisohydric behavior as a stress-resistance trait. Plant Signal Behav 7:767–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaller GE, Shiu SH, Armitage JP (2011) Two-component systems and their co-option for eukaryotic signal transduction. Curr Biol 21:R320–R330

    Article  CAS  PubMed  Google Scholar 

  • Schiller D, Krämer R, Morbach S (2004) Cation specificity of osmosensing by the betaine carrier BetP of Corynebacterium glutamicum. FEBS Lett 563:108–112

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    Article  CAS  PubMed  Google Scholar 

  • Sevanto S (2014) Phloem transport and drought. J Exp Bot 65:1751–1759

    Article  CAS  PubMed  Google Scholar 

  • Shanker AK, Maheswari M, Yadav SK, Desai S, Bhanu D, Attal NB, Venkateswarlu B (2014) Drought stress responses in crops. Funct Integr Genomics 14:11–22

    Article  CAS  PubMed  Google Scholar 

  • Shkolnik D, Fromm H (2016) The Cholodny-Went theory does not explain hydrotropism. Plant Sci 252:400–403

    Article  CAS  PubMed  Google Scholar 

  • Shkolnik D, Krieger G, Nuriel R, Fromm H (2016) hydrotropism: root bending does not require auxin redistribution. Mol Plant 9:757–759

    Article  CAS  PubMed  Google Scholar 

  • Shkolnik D, Nuriel R, Bonza MC, Costa A, Fromm H (2018) MIZ1 regulates ECA1 to generate a slow, long-distance phloem-transmitted ca signal essential for root water tracking in Arabidopsis. Proc Natl Acad Sci U S A 115:8031–8036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley CE, Shrivastava J, Brugman R, Heinzelmann E, van Swaay D, Grossmann G (2018) Dual-flow-root chip reveals local adaptations of roots towards environmental asymmetry at the physiological and genetic levels. New Phytol 217:1357–1369

    Article  CAS  PubMed  Google Scholar 

  • Steudle E (2001) The cohesion-tension mechanism and the acquisition of water by plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:847–875

    Article  CAS  PubMed  Google Scholar 

  • Sussmilch FC, Brodribb TJ, McAdam SAM (2017) Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required. J Exp Bot 68:2913–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taiz L, Zeiger E, Moller IM and Murphy A (2015a) Plant physiology and development, 6th edn (ed. Sinauer AD), pp 83–118. Sinauer Associates Sunderland, MA

    Google Scholar 

  • Taiz L, Zeiger E, Moller IM and Murphy A (2015b) Plant physiology and development, 6th edn (ed. Sinauer AD), pp 104—110. Sinauer Associates, Sunderland MA

    Google Scholar 

  • Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K (2018) A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 556:235–238.

    Article  CAS  PubMed  Google Scholar 

  • Tanigawa M, Kihara A, Terashima M, Takahara T, Maeda T (2012) Sphingolipids regulate the yeast high-osmolarity glycerol response pathway. Mol Cell Biol 32:2861–2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M (2017) Plant phenomics, from sensors to knowledge. Curr Biol 27:R770–R783

    Article  CAS  PubMed  Google Scholar 

  • Tran D, Galletti R, Neumann ED, Dubois A, Sharif-Naeini R, Geitmann A, Frachisse JM, Hamant O, Ingram GC (2017) A mechanosensitive Ca2+ channel activity is dependent on the developmental regulator DEK1. Nat Commun 8:1009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Dusschoten D, Metzner R, Kochs J, Postma JA, Pflugfelder D, Bühler J, Schurr U, Jahnke S (2016) Quantitative 3d analysis of plant roots growing in soil using magnetic resonance imaging. Plant Physiol 170:1176–1188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Veley KM, Marshburn S, Clure CE, Haswell ES (2012) Mechanosensitive channels protect plastids from hypoosmotic stress during normal plant growth. Curr Biol 22:408–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veley KM, Maksaev G, Frick EM, January E, Kloepper SC, Haswell ES (2014) Arabidopsis MSL10 has a regulated cell death signaling activity that is separable from its mechanosensitive ion channel activity. Plant Cell 26:3115–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voxeur A, Höfte H (2016) Cell wall integrity signaling in plants: “To grow or not to grow that's the question”. Glycobiology 26:950–960

    Article  CAS  PubMed  Google Scholar 

  • Wasson A, Bischof L, Zwart A, Watt M (2016) A portable fluorescence pectroscopy imaging system for automated root phenotyping in soil cores in the field. J Exp Bot 67:1033–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams M, Oliver M, Pallardy S (2014) Teaching tools in plant biology™: lecture notes. water relations 1: uptake and transport. The Plant Cell. www.plantcell.org. American Society of Plant Biologists

    Google Scholar 

  • Wilson ME, Jensen GS, Haswell ES (2011) Two mechanosensitive channel homologs influence division ring placement in Arabidopsis chloroplasts. Plant Cell 23:2939–2949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson H, Mycock D, Weiersbye IM (2017) The salt glands of Tamarix usneoides E. Mey. ex Bunge (South African Salt Cedar). Int J Phytoremediation 19:587–595

    Article  PubMed  Google Scholar 

  • Wohlbach DJ, Quirino BF, Sussman MR (2008) Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. Plant Cell 20:1101–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood JM (2006) Osmosensing in bacteria. Sciences STKE 357:pe48

    Google Scholar 

  • Yamanaka T, Nakagawa Y, Mori K, Nakano M, Imamura T, Kataoka H, Terashima A, Iida K, Kojima I, Katagiri T, Shinozaki K, Iida H (2010) MCA1 and MCA2 that mediate Ca2+ uptake have distinct and overlapping roles in Arabidopsis. Plant Physiol 152:1284–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo CY, Pence HE, Jin JB, Miura K, Gosney MJ, Hasegawa PM, Mickelbart MV (2010) The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. Plant Cell 22:4128–4141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C, Zhang J, Theprungsirikul L, Shrift T, Krichilsky B, Johnson DM, Swift GB, He Y, Siedow JN, Pei ZM (2014) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514:367–371.

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hillel Fromm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fromm, H., Fichman, Y. (2019). Water Sensing in Plants. In: Sopory, S. (eds) Sensory Biology of Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-8922-1_4

Download citation

Publish with us

Policies and ethics