Skip to main content

The Strategies of Nanomaterials for Traversing Blood-Brain Barrier

  • Chapter
  • First Online:
Nanomedicine in Brain Diseases

Abstract

Central nervous system (CNS) ailments establish an arrangement of difficult neurotic conditions concerning identification and therapeutics. For the more significant part of these clusters, there is an absence of an early determination, biomarkers to permit legitimate follow-up of infection movement and powerful, effective methodologies to permit a diligent fix.

The engraved prognosis and diagnosis of neurodegenerative disease at advanced stages and in older people are recognized as serious health concern worldwide, especially interminable age-related neurodegenerative malfunctions that are reflected as general well-being issues.

The principal issue related to the management of CNS infections is owed, in any event to some degree, to specific qualities of the brain and spinal cord, when contrasted with peripheral organs. In such manner, the CNS is physically and synthetically secured by the blood-brain barrier (BBB) that is responsible for the maintenance of brain’s homeostasis and substantially limits the movement of most therapeutics to the brain parenchyma. Different methodologies for the therapeutics were developed and modified for transposing the BBB and expecting to treat brain disorders, without meddling with the regular functioning of the brain.

In the present chapter, we will try to harness the most recent advances in neurodegenerative diseases amelioration approaches based on distinctive drug delivery systems via nanoscale materials, exosomes, and RNAi (i.e., siRNA, etc.) based frameworks.

Key Points

  1. 1.

    The nanobiotechnology assumes an encouraging job while delivering the therapeutics across the blood-brain barrier (BBB) that is considered to be a noteworthy snag to remedial delivery for CNS issue.

  2. 2.

    Attractive attributes of the perfect strategy for remedial delivery over the BBB are depicted in this study. It should allow specific targated medication conveyance without harming the BBB.

  3. 3.

    Polymeric NPs had shown the most positive results among the large number of nanoparticles for the convergence of the BBB.

  4. 4.

    Diffrent modes of drug delivery vehicles were employed for crossing the BBB, like modifying NPs for improving specific targeting, viz., Trojan steed approach, and employment of peptide-NP conjugates and also two industrial innovations: LipoBridge™ and G-Technology®.

  5. 5.

    Targeting of siRNA employing exosomes.

  6. 6.

    The important part of employing nanotechnology for the treatment of CNS maladies is that in addition to the delivery of therapeutics to the brain, it also allowed its trackings and empowers imaging and therapy of brain tumors.

  7. 7.

    In the coming age, there will be an improvement in the nanotechnology for CNS issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: An overview: Structure, regulation, and clinical implications. Neurobiol Dis. 2004;16(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  2. Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood–brain barrier. Nature. 2010;468(7323):557.

    Article  CAS  PubMed  Google Scholar 

  3. Schroeder U, Sommerfeld P, Ulrich S, Sabel BA. Nanoparticle technology for delivery of drugs across the blood–brain barrier. J Pharm Sci. 1998;87(11):1305–7.

    Article  CAS  PubMed  Google Scholar 

  4. Garcia-Garcia E, Andrieux K, Gil S, Couvreur P. Colloidal carriers and blood–brain barrier (BBB) translocation: A way to deliver drugs to the brain? Int J Pharm. 2005;298(2):274–92.

    CAS  PubMed  Google Scholar 

  5. Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood–brain barrier by nanoparticles. J Control Release. 2012;161(2):264–73.

    Article  CAS  PubMed  Google Scholar 

  6. Abbott NJ. Astrocyte–endothelial interactions and blood–brain barrier permeability. J Anat. 2002;200(6):629–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm. 2002;28(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  8. Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target. 2002;10(4):317–25.

    Article  CAS  PubMed  Google Scholar 

  9. Scherrmann J-M. Drug delivery to brain via the blood–brain barrier. Vasc Pharmacol. 2002;38(6):349–54.

    Article  CAS  Google Scholar 

  10. Greig NH. Optimizing drug delivery to brain tumors. Cancer Treat Rev. 1987;14(1):1–28.

    Article  CAS  PubMed  Google Scholar 

  11. Groothuis DR. The blood-brain and blood-tumor barriers: A review of strategies for increasing drug delivery. Neuro-Oncology. 2000;2(1):45–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vyas TK, Shahiwala A, Marathe S, Misra A. Intranasal drug delivery for brain targeting. Curr Drug Deliv. 2005;2(2):165–75.

    Article  CAS  PubMed  Google Scholar 

  13. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–85.

    Article  CAS  PubMed  Google Scholar 

  14. Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ. Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology. 1998;37(12):1553–61.

    Article  CAS  PubMed  Google Scholar 

  15. Bell RD, Zlokovic BV. Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathol. 2009;118(1):103–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57(2):178–201.

    Article  CAS  PubMed  Google Scholar 

  17. Frank RT, Aboody KS, Najbauer J. Strategies for enhancing antibody delivery to the brain. Biochim Biophys Acta (BBA)-Rev Cancer. 2011;1816(2):191–8.

    Article  CAS  Google Scholar 

  18. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25.

    Article  CAS  PubMed  Google Scholar 

  19. Lossinsky AS, Shivers RR. Structural pathways for macromolecular and cellular transport across the blood-brain barrier during inflammatory conditions. Histol Histopathol Cell Mol Biol. 2004;19(2):535–64.

    CAS  Google Scholar 

  20. Stamatovic SM, Keep RF, Andjelkovic AV. Brain endothelial cell-cell junctions: How to “open” the blood brain barrier. Curr Neuropharmacol. 2008;6(3):179–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tsuji A. Small molecular drug transfer across the blood-brain barrier via carrier-mediated transport systems. NeuroRx. 2005;2(1):54–62.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tamai I, Tsuji A. Transporter-mediated permeation of drugs across the blood–brain barrier. J Pharm Sci. 2000;89(11):1371–88.

    Article  CAS  PubMed  Google Scholar 

  23. Bradbury MWB. The blood-brain barrier. Transport across the cerebral endothelium. Circ Res. 1985;57(2):213–22.

    Article  CAS  PubMed  Google Scholar 

  24. Oldendorf WH. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Physiol Content. 1971;221(6):1629–39.

    Article  CAS  Google Scholar 

  25. Bradbury MW. The blood-brain barrier. Exp Physiol. 1993;78(4):453–72.

    Article  CAS  PubMed  Google Scholar 

  26. Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: An overview. Adv Drug Deliv Rev. 2012;64:138–53.

    Article  Google Scholar 

  27. Dean M, Hamon Y, Chimini G. The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res. 2001;42(7):1007–17.

    CAS  PubMed  Google Scholar 

  28. Yi X. Protein modification by pluronic block copolymer for brain delivery. Nebraska: University of Nebraska Medical Center; 2010.

    Google Scholar 

  29. Sampson JH, Raghavan R, Provenzale JM, Croteau D, Reardon DA, Coleman RE, et al. Induction of hyperintense signal on T2-weighted MR images correlates with infusion distribution from intracerebral convection-enhanced delivery of a tumor-targeted cytotoxin. Neuroradiology. 2006; https://doi.org/10.2214/AJR.06.0428.

    Article  PubMed  Google Scholar 

  30. Ross TM, Martinez PM, Renner JC, Thorne RG, Hanson LR, Frey Ii WH. Intranasal administration of interferon beta bypasses the blood–brain barrier to target the central nervous system and cervical lymph nodes: A non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol. 2004;151(1–2):66–77.

    Article  CAS  PubMed  Google Scholar 

  31. Hanson LR, Frey WH. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008;9(3):S5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhu J, Jiang Y, Xu G, Liu X. Intranasal administration: A potential solution for cross-BBB delivering neurotrophic factors. Histol Histopathol. 2012;27(5):537–48.

    CAS  PubMed  Google Scholar 

  33. Liu L, Guo K, Lu J, Venkatraman SS, Luo D, Ng KC, et al. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG–TAT for drug delivery across the blood–brain barrier. Biomaterials. 2008;29(10):1509–17.

    Article  CAS  PubMed  Google Scholar 

  34. Yang SC, Lu LF, Cai Y, Zhu JB, Liang BW, Yang CZ. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release. 1999;59(3):299–307.

    Article  CAS  PubMed  Google Scholar 

  35. Georgieva JV, Kalicharan D, Couraud P-O, Romero IA, Weksler B, Hoekstra D, et al. Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood–brain barrier endothelial cells in vitro. Mol Ther. 2011;19(2):318–25.

    Article  CAS  PubMed  Google Scholar 

  36. Lockman PR, Koziara JM, Mumper RJ, Allen DD. Nanoparticle surface charges alter blood–brain barrier integrity and permeability. J Drug Target. 2004;12(9–10):635–41.

    Article  CAS  PubMed  Google Scholar 

  37. Jallouli Y, Paillard A, Chang J, Sevin E, Betbeder D. Influence of surface charge and inner composition of porous nanoparticles to cross blood–brain barrier in vitro. Int J Pharm. 2007;344(1–2):103–9.

    Article  CAS  PubMed  Google Scholar 

  38. Fenart L, Casanova A, Dehouck B, Duhem C, Slupek S, Cecchelli R, et al. Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood-brain barrier. J Pharmacol Exp Ther. 1999;291(3):1017–22.

    CAS  PubMed  Google Scholar 

  39. Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA. The nanoparticle–protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interf Sci. 2007;134:167–74.

    Article  CAS  Google Scholar 

  40. Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, et al. Influence of silver nanoparticles on neurons and blood-brain barrier via subcutaneous injection in rats. Appl Surf Sci. 2008;255(2):502–4.

    Article  CAS  Google Scholar 

  41. Ulbrich K, Hekmatara T, Herbert E, Kreuter J. Transferrin-and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur J Pharm Biopharm. 2009;71(2):251–6.

    Article  CAS  PubMed  Google Scholar 

  42. Chang J, Jallouli Y, Kroubi M, Yuan X, Feng W, Kang C, et al. Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood–brain barrier. Int J Pharm. 2009;379(2):285–92.

    Article  CAS  PubMed  Google Scholar 

  43. Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD. Cellular uptake and cytotoxicity of gold nanorods: Molecular origin of cytotoxicity and surface effects. Small. 2009;5(6):701–8.

    Article  CAS  PubMed  Google Scholar 

  44. Ulbrich K, Knobloch T, Kreuter J. Targeting the insulin receptor: Nanoparticles for drug delivery across the blood–brain barrier (BBB). J Drug Target. 2011;19(2):125–32.

    Article  CAS  PubMed  Google Scholar 

  45. Wang H, Zhao Y, Wu Y, Hu Y, Nan K, Nie G, et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials. 2011;32(32):8281–90.

    Article  CAS  PubMed  Google Scholar 

  46. Kreuter J. Nanoparticles and microparticles for drug and vaccine delivery. J Anat. 1996;189(Pt 3):503.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Anraku Y, Kuwahara H, Fukusato Y, Mizoguchi A, Ishii T, Nitta K, et al. Glycaemic control boosts glucosylated nanocarrier crossing the BBB into the brain. Nat Commun. 2017;8(1):1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci. 2008;105(38):14265–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lesniak A, Fenaroli F, Monopoli MP, Åberg C, Dawson KA, Salvati A. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano. 2012;6(7):5845–57.

    Article  CAS  PubMed  Google Scholar 

  50. Walkey CD, Olsen JB, Song F, Liu R, Guo H, Olsen DWH, et al. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano. 2014;8(3):2439–55.

    Article  CAS  PubMed  Google Scholar 

  51. Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci. 2007;104(7):2050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, et al. ‘Stealth’corona-core nanoparticles surface modified by polyethylene glycol (PEG): Influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Coll Surf B Biointerfaces. 2000;18(3–4):301–13.

    Article  CAS  Google Scholar 

  53. Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, et al. PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release. 2006;114(3):343–7.

    Article  CAS  PubMed  Google Scholar 

  54. Ventola CL. The nanomedicine revolution: Part 2: Current and future clinical applications. Pharm Ther. 2012;37(10):582.

    Google Scholar 

  55. Tavano R, Segat D, Reddi E, Kos J, Rojnik M, Kocbek P, et al. Procoagulant properties of bare and highly PEGylated vinyl-modified silica nanoparticles. Nanomedicine. 2010;5(6):881–96.

    Article  CAS  PubMed  Google Scholar 

  56. Bana L, Minniti S, Salvati E, Sesana S, Zambelli V, Cagnotto A, et al. Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Aβ aggregation features and cross the blood–brain-barrier: Implications for therapy of Alzheimer disease. Nanomed Nanotechnol, Biol Med. 2014;10(7):1583–90.

    Article  CAS  Google Scholar 

  57. Farrington GK, Caram-Salas N, Haqqani AS, Brunette E, Eldredge J, Pepinsky B, et al. A novel platform for engineering blood-brain barrier-crossing bispecific biologics. FASEB J. 2014;28(11):4764–78.

    Article  CAS  PubMed  Google Scholar 

  58. Tavazoie SF, Pencheva N. Treatment and diagnosis of melanoma. 2018; US Patent App. 15/881,231.

    Google Scholar 

  59. Re F, Cambianica I, Zona C, Sesana S, Gregori M, Rigolio R, et al. Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model. Nanomed Nanotechnol Biol Med. 2011;7(5):551–9.

    Article  CAS  Google Scholar 

  60. Gastaldi L, Battaglia L, Peira E, Chirio D, Muntoni E, Solazzi I, et al. Solid lipid nanoparticles as vehicles of drugs to the brain: Current state of the art. Eur J Pharm Biopharm. 2014;87(3):433–44.

    Article  CAS  PubMed  Google Scholar 

  61. Lu C-T, Zhao Y-Z, Wong HL, Cai J, Peng L, Tian X-Q. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomed. 2014;9:2241.

    Article  Google Scholar 

  62. Pourgholi F, Farhad J-N, Kafil HS, Yousefi M. Nanoparticles: Novel vehicles in treatment of glioblastoma. Biomed Pharmacother. 2016;77:98–107.

    Article  CAS  PubMed  Google Scholar 

  63. Montenegro L, Ottimo S, Puglisi G, Castelli F, Sarpietro MG. Idebenone loaded solid lipid nanoparticles interact with biomembrane models: Calorimetric evidence. Mol Pharm. 2012;9(9):2534–41.

    Article  CAS  PubMed  Google Scholar 

  64. Sun Y, Liu L, Xue Y, Wang P. Effects of insulin combined with idebenone on blood–brain barrier permeability in diabetic rats. J Neurosci Res. 2015;93(4):666–77.

    Article  CAS  PubMed  Google Scholar 

  65. Kurzrock R, Gabrail N, Chandhasin C, Moulder S, Smith C, Brenner A, et al. Safety, pharmacokinetics, and activity of GRN1005, a novel conjugate of angiopep-2, a peptide facilitating brain penetration, and paclitaxel, in patients with advanced solid tumors. Mol Cancer Ther. 2012;11(2):308–16.

    Article  CAS  PubMed  Google Scholar 

  66. Drappatz J, Brenner A, Wong ET, Eichler A, Schiff D, Groves MD, et al. Phase I study of GRN1005 in recurrent malignant glioma. Clin Cancer Res. 2013; https://doi.org/10.1158/1078-0432.CCR-12-2481.

    Article  CAS  PubMed  Google Scholar 

  67. Patil Y, Panyam J. Polymeric nanoparticles for siRNA delivery and gene silencing. Int J Pharm. 2009;367(1–2):195–203.

    Article  CAS  PubMed  Google Scholar 

  68. Dahlman JE, Barnes C, Khan OF, Thiriot A, Jhunjunwala S, Shaw TE, et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat Nanotechnol. 2014;9(8):648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cun D, Foged C, Yang M, Frøkjær S, Nielsen HM. Preparation and characterization of poly (DL-lactide-co-glycolide) nanoparticles for siRNA delivery. Int J Pharm. 2010;390(1):70–5.

    Article  CAS  PubMed  Google Scholar 

  70. Klajnert B, Cortijo-Arellano M, Bryszewska M, Cladera J. Influence of heparin and dendrimers on the aggregation of two amyloid peptides related to Alzheimer’s and prion diseases. Biochem Biophys Res Commun. 2006;339(2):577–82.

    Article  CAS  PubMed  Google Scholar 

  71. Luo D, Haverstick K, Belcheva N, Han E, Saltzman WM. Poly (ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery. Macromolecules. 2002;35(9):3456–62.

    Article  CAS  Google Scholar 

  72. Davis ME. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: From concept to clinic. Mol Pharm. 2009;6(3):659–68.

    Article  CAS  PubMed  Google Scholar 

  73. Lalatsa A, Schatzlein AG, Uchegbu IF. Strategies to deliver peptide drugs to the brain. Mol Pharm. 2014;11(4):1081–93.

    Article  CAS  PubMed  Google Scholar 

  74. Cosco D, Di Marzio L, Marianecci C, Trapasso E, Paolino D, Celia C, et al. Colloidal supramolecular aggregates for therapeutic application in neuromedicine. Curr Med Chem. 2014;21(36):4132–53.

    Article  CAS  PubMed  Google Scholar 

  75. Lü J-M, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009;9(4):325–41.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cai Q, Wang L, Deng G, Liu J, Chen Q, Chen Z. Systemic delivery to central nervous system by engineered PLGA nanoparticles. Am J Transl Res. 2016;8(2):749.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Monsalve Y, Tosi G, Ruozi B, Belletti D, Vilella A, Zoli M, et al. PEG-g-chitosan nanoparticles functionalized with the monoclonal antibody OX26 for brain drug targeting. Nanomedicine. 2015;10(11):1735–50.

    Article  CAS  PubMed  Google Scholar 

  78. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: Advances in siRNA delivery. Nat Rev Drug Discov. 2009;8(2):129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dominska M, Dykxhoorn DM. Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci. 2010;123(8):1183–9.

    Article  CAS  PubMed  Google Scholar 

  80. Son S, Jang J, Youn H, Lee S, Lee D, Lee Y-S, et al. A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA. Biomaterials. 2011;32(21):4968–75.

    Article  PubMed  CAS  Google Scholar 

  81. Park T-E, Singh B, Li H, Lee J-Y, Kang S-K, Choi Y-J, et al. Enhanced BBB permeability of osmotically active poly (mannitol-co-PEI) modified with rabies virus glycoprotein via selective stimulation of caveolar endocytosis for RNAi therapeutics in Alzheimer’s disease. Biomaterials. 2015;38:61–71.

    Article  CAS  PubMed  Google Scholar 

  82. Gooding M, Malhotra M, McCarthy DJ, Godinho BMDC, Cryan JF, Darcy R, et al. Synthesis and characterization of rabies virus glycoprotein-tagged amphiphilic cyclodextrins for siRNA delivery in human glioblastoma cells: In vitro analysis. Eur J Pharm Sci. 2015;71:80–92.

    Article  CAS  PubMed  Google Scholar 

  83. Lakhal S, Wood MJA. Exosome nanotechnology: An emerging paradigm shift in drug delivery. BioEssays. 2011;33(10):737–41.

    Article  CAS  PubMed  Google Scholar 

  84. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341.

    Article  CAS  PubMed  Google Scholar 

  85. Kumar SA, Peter Y-A, Nadeau JL. Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology. 2008;19(49):495101.

    Article  PubMed  CAS  Google Scholar 

  86. Decuzzi P, Ferrari M. The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials. 2007;28(18):2915–22.

    Article  CAS  PubMed  Google Scholar 

  87. Gupta AK, Berry C, Gupta M, Curtis A. Receptor-mediated targeting of magnetic nanoparticles using insulin as a surface ligand to prevent endocytosis. IEEE Trans Nanobioscience. 2003;2(4):255–61.

    Article  PubMed  Google Scholar 

  88. Heitz F, Morris MC, Divita G. Twenty years of cell-penetrating peptides: From molecular mechanisms to therapeutics. Br J Pharmacol. 2009;157(2):195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Stalmans S, Bracke N, Wynendaele E, Gevaert B, Peremans K, Burvenich C, et al. Cell-penetrating peptides selectively cross the blood-brain barrier in vivo. PLoS One. 2015;10(10):e0139652.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Li T, Bourgeois J-P, Celli S, Le Sourd A-M, Mecheri S, Weksler B, et al. Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: Application to brain imaging. FASEB J. 2012;26(10):3969–79.

    Article  CAS  PubMed  Google Scholar 

  91. Tortorella S, Karagiannis TC. Transferrin receptor-mediated endocytosis: A useful target for cancer therapy. J Membr Biol. 2014;247(4):291–307.

    Article  CAS  PubMed  Google Scholar 

  92. Shriver LP, Koudelka KJ, Manchester M. Viral nanoparticles associate with regions of inflammation and blood brain barrier disruption during CNS infection. J Neuroimmunol. 2009;211(1–2):66–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kuo Y-C, Su F-L. Transport of stavudine, delavirdine, and saquinavir across the blood–brain barrier by polybutylcyanoacrylate, methylmethacrylate-sulfopropylmethacrylate, and solid lipid nanoparticles. Int J Pharm. 2007;340(1–2):143–52.

    Article  CAS  PubMed  Google Scholar 

  94. Elbakry A, Zaky A, Liebl R, Rachel R, Goepferich A, Breunig M. Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett. 2009;9(5):2059–64.

    Article  CAS  PubMed  Google Scholar 

  95. Na HB, Song IC, Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv Mater. 2009;21(21):2133–48.

    Article  CAS  Google Scholar 

  96. Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem Int Ed. 2008;47(8):1382–95.

    Article  CAS  Google Scholar 

  97. Kim ST, Chompoosor A, Yeh Y, Agasti SS, Solfiell DJ, Rotello VM. Dendronized gold nanoparticles for siRNA delivery. Small. 2012;8(21):3253–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J Control Release. 2000;65(1–2):271–84.

    Article  CAS  PubMed  Google Scholar 

  99. Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65(1):71–9.

    Article  CAS  PubMed  Google Scholar 

  100. Lennernäs H, Palm K, Fagerholm U, Artursson P. Comparison between active and passive drug transport in human intestinal epithelial (Caco-2) cells in vitro and human jejunum in vivo. Int J Pharm. 1996;127(1):103–7.

    Article  Google Scholar 

  101. Baldwin SA. Mammalian passive glucose transporters: Members of an ubiquitous family of active and passive transport proteins. Biochim Biophys Acta (BBA)-Rev Biomembr. 1993;1154(1):17–49.

    Article  CAS  Google Scholar 

  102. Cho W-S, Cho M, Jeong J, Choi M, Cho H-Y, Han BS, et al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol. 2009;236(1):16–24.

    Article  CAS  PubMed  Google Scholar 

  103. Cho W-S, Kim S, Han BS, Son WC, Jeong J. Comparison of gene expression profiles in mice liver following intravenous injection of 4 and 100 nm-sized PEG-coated gold nanoparticles. Toxicol Lett. 2009;191(1):96–102.

    Article  CAS  PubMed  Google Scholar 

  104. Ruan S, Yuan M, Zhang L, Hu G, Chen J, Cun X, et al. Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials. 2015;37:425–35.

    Article  CAS  PubMed  Google Scholar 

  105. Aktaş Y, Yemisci M, Andrieux K, Gürsoy RN, Alonso MJ, Fernandez-Megia E, et al. Development and brain delivery of chitosan− PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug Chem. 2005;16(6):1503–11.

    Article  PubMed  CAS  Google Scholar 

  106. Pardridge WM, Kang Y-S, Buciak JL. Transport of human recombinant brain-derived neurotrophic factor (BDNF) through the rat blood− brain barrier in vivo using vector-mediated peptide drug delivery. Pharm Res. 1994;11(5):738–46.

    Article  CAS  PubMed  Google Scholar 

  107. Zhang T-T, Li W, Meng G, Wang P, Liao W. Strategies for transporting nanoparticles across the blood–brain barrier. Biomater Sci. 2016;4(2):219–29.

    Article  CAS  PubMed  Google Scholar 

  108. Demeule M, Currie J, Bertrand Y, Ché C, Nguyen T, Régina A, et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector Angiopep-2. J Neurochem. 2008;106(4):1534–44.

    Article  CAS  PubMed  Google Scholar 

  109. Wolf BB, Lopes MB, VandenBerg SR, Gonias SL. Characterization and immunohistochemical localization of alpha 2-macroglobulin receptor (low-density lipoprotein receptor-related protein) in human brain. Am J Pathol. 1992;141(1):37.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ren J, Shen S, Wang D, Xi Z, Guo L, Pang Z, et al. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials. 2012;33(11):3324–33.

    Article  CAS  PubMed  Google Scholar 

  111. Chen G-J, Su Y-Z, Hsu C, Lo Y-L, Huang S-J, Ke J-H, et al. Angiopep-pluronic F127-conjugated superparamagnetic iron oxide nanoparticles as nanotheranostic agents for BBB targeting. J Mater Chem B. 2014;2(34):5666–75.

    Article  CAS  PubMed  Google Scholar 

  112. Hu Y-L, Gao J-Q. Potential neurotoxicity of nanoparticles. Int J Pharm. 2010;394(1–2):115–21.

    Article  CAS  PubMed  Google Scholar 

  113. Karmakar A, Zhang Q, Zhang Y. Neurotoxicity of nanoscale materials. J Food Drug Anal. 2014;22(1):147–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingyang Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rauf, M.A., Rehman, F.U., Zheng, M., Shi, B. (2019). The Strategies of Nanomaterials for Traversing Blood-Brain Barrier. In: Xue, X. (eds) Nanomedicine in Brain Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8731-9_2

Download citation

Publish with us

Policies and ethics