Skip to main content

MVTRNG: Majority Voter-Based Crossed Loop Quantum True Random Number Generator in QCA Nanotechnology

  • Conference paper
  • First Online:
Computational Advancement in Communication Circuits and Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 575))

Abstract

True random number generator, commonly known as TRNG, is an important candidate in today’s cryptography process. TRNG is only innovative design which can generate non-deterministic and unique digital bit stream to any communication systems or secured system. Quantum cellular automata (QCA) technology is adopted to design TRNG due to its low area, ultra high operating frequency, and low power dissipation. This article presents a QCA majority voter-based TRNG, which is comprised of crossed loop circuit and seed circuit. The random bits are extracted from crossed loop circuit which is composed of “OR” gate. Again the seed circuits are used here to enhance the unpredictability of generated number sequence and quality of random number. The proposed TRNG design is verified through QCADesigner tool 2.0.3, and its architecture is passed industry standard successfully. In area, latency, and energy point of view, the proposed 8-bit TRNG is consumed 0.36 um2 area, 1 QCA clock cycle latency, and 49.7 mev energy (per bit). So, proposed TRNG will be interpreted as a promising design in next-generation cryptography domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Lent, P. Tougaw, W. Porod, G. Bernstein, Quantum cellular automata. Nanotechnology 4(1), 49–57 (1993)

    Article  Google Scholar 

  2. P. Tougaw, C. Lent, Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80(8), 4722–4736 (1996)

    Article  Google Scholar 

  3. S. Hedayatpour, S. Chuprat, Random number generator based on transformed image data source. Adv. Comput. Commun. Control Autom. 121, 457–464 (2011)

    Article  Google Scholar 

  4. L. Zhang, Z. Kong, C. Chang, PCKGen: a phase change memory based cryptographic key generator, in IEEE International Symposium on Circuits and Systems (2013), pp. 1444–1447

    Google Scholar 

  5. L. Zhang, X. Fong, C. Chang, Z. Kong, K. Roy, Optimizating emerging non-volatile memories for dual-mode applications: data storage and key generator. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(7), 1176–1187 (2015)

    Article  Google Scholar 

  6. U. Rührmair, C. Jaeger, M. Bator, M. Stutzmann, P. Lugli, G. Csaba, Applications of high-capacity crossbar memories in cryptography. IEEE Trans. Nanotechnol. 10(3), 489–498 (2011)

    Article  Google Scholar 

  7. S.E. Frost, T.J. Dysart, P.M. Kogge, C.S. Lent, Carbon nanotubes for quantum-dot cellular automata clocking, in 4th IEEE Conference on Nanotechnology (2004), pp. 171–173

    Google Scholar 

  8. National institute of standards and technology (NIST), A Statistical test suite for random and pseudorandom number generators for cryptographic applications, Special Publication 800–822 (2010)

    Google Scholar 

  9. W. Holman, J. Connelly, A. Dowlatabadi, An integrated analog/digital random noise source. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44, 521–528 (1997)

    Article  Google Scholar 

  10. M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, M. Varanonuovo, A high-speed oscillator-based truly random number source for cryptographic applications on a smart card IC. IEEE Trans. Comput. 52, 403–409 (2003)

    Article  Google Scholar 

  11. B. Sunar, W. Martin, D. Stinson, A provably secure true random number generator with built-in tolerance to active attacks. IEEE Trans. Comput. 56(1), 109–119 (2007)

    Article  MathSciNet  Google Scholar 

  12. D. Schellekens, B. Preneel, I. Verbauwhede, FPGA vendor agnostic true random number generator, in International Conference on Field Programmable Logic and Applications (FPL, 2006), pp. 1–6

    Google Scholar 

  13. K. Wold, C. Tan, Analysis and enhancement of random number generator in FPGA based on oscillator rings. Int. J. Reconfigurable Comput. 4 (2009)

    Google Scholar 

  14. P. Bayon, L. Bossuet, A. Aubert, V. Fischer, F. Poucheret, B. Robisson, P. Maurine, Contactless electromagnetic active attack on ring oscillator based true random number generator. COSADE 7275, 151–166 (2012)

    Google Scholar 

  15. S. Mathew, S. Srinivasan, M. Anders, H. Kaul, S. Hsu, F. Sheikh, R. Krishnamurthy, 2.4 Gbps, 7 mW all-digital PVT-variation tolerant true random number generator for 45 nm CMOS high-performance microprocessors. IEEE J. Solid-State Circuits 47(11), pp. 2807–2821 (2012)

    Article  Google Scholar 

  16. C. Tokunaga, D. Blaauw, T. Mudge, True random number generator with a metastability-based quality control. IEEE J. Solid-State Circuits 43(1), 78–85 (2008)

    Article  Google Scholar 

  17. T. Amaki, M. Hashimoto, T. Onoye, A process and temperature tolerant oscillator-based true random number generator. IEICE Trans. Fundam. Electron. Commun. Comput. 97(12), 2393–2399 (2014)

    Article  Google Scholar 

  18. M. Bucci, R. Luzzi, Fully digital random bit generators for cryptographic applications. IEEE Trans. Circuits Syst. I Regul. Pap. 55(3), 861–875 (2008)

    Article  MathSciNet  Google Scholar 

  19. Y.T. Chiu, A memristor true random-number generator. IEEE Spectr. (2012)

    Google Scholar 

  20. T. Zhang, M. Yin, C. Xu, X. Lu, X. Sun, Y. Yang, R. Huang, High-speed true random number generation based on paired memristors for security electronics. Nanotechnology (2017)

    Google Scholar 

  21. W. Gaviria Rojas, J. McMorrow, M. Geier, Q. Tang, C. Kim, T. Marks, M. Hersam, Solution-processed carbon nanotube true random number generator, Nano Lett. 17(8), 4976–4981 (2017)

    Article  Google Scholar 

  22. Y. Wang, H. Cai, L. Naviner, J. Klein, J. Yang, W. Zhao, A novel circuit design of true random number generator using magnetic tunnel junction, in IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) (2016), pp. 123–128

    Google Scholar 

  23. Y. Qu, J. Han, B. Cockburn, W. Pedrycz, Y. Zhang, W. Zhao, A true random number generator based on parallel STT-MTJs, in Design, Automation & Test in Europe Conference & Exhibition (DATE) (2017), pp. 606–609

    Google Scholar 

  24. T. Purkayastha, D. De, K. Das, A novel pseudo random number generator based cryptographic architecture using quantum-dot cellular automata. Microprocess. Microsyst. 45, 32–44 (2016)

    Article  Google Scholar 

  25. A. Keikha, C. Dadkhah, M. Tehrani, K. Navi, A novel design of a random generator circuit in QCA. Int. J. Comput. Appl. 35(1), 30–36 (2011)

    Google Scholar 

  26. M.M. Abutaleb, A novel true random number generator based on QCA nanocomputing. Nano Commun. Netw. 17, 14–20 (2018)

    Article  Google Scholar 

  27. K. Walus, T. Dysart, G. Jullien, R. Budiman, QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3, 26–31 (2004)

    Article  Google Scholar 

  28. S. Srivastava, A. Asthana, S. Bhanja, S. Sarkar, QCAPro-an error power estimation tool for QCA circuit design, in IEEE International Symposium of Circuits Systems (2011), pp. 2377–2380

    Google Scholar 

Download references

Acknowledgements

The authors Dr. Kunal Das, Arindam Sadhu are grateful to the Science and Engineering Research Board (DST-SERB), Government of India, for providing with the grant for accomplishment of the project under the Project File No. CR/2016/000613.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arindam Sadhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sadhu, A., Das, K., De, D., Kanjilal, M.R. (2020). MVTRNG: Majority Voter-Based Crossed Loop Quantum True Random Number Generator in QCA Nanotechnology. In: Maharatna, K., Kanjilal, M., Konar, S., Nandi, S., Das, K. (eds) Computational Advancement in Communication Circuits and Systems. Lecture Notes in Electrical Engineering, vol 575. Springer, Singapore. https://doi.org/10.1007/978-981-13-8687-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8687-9_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8686-2

  • Online ISBN: 978-981-13-8687-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics