Skip to main content

Functional Composites of Discharge Plasmas and Solid Metamaterials

  • Chapter
  • First Online:
Electromagnetic Metamaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 287))

  • 1055 Accesses

Abstract

Discharge plasmas are composed of electrons and ions, and their permittivity is dynamic and tunable. Conventional metamaterials are composed of designed functional microstructures of solid materials, and become extraordinary wave media such as negative-permeability materials. The composites of the plasmas and the metamaterials are well mixed to show dynamic properties coming from plasmas and extraordinary outputs based on metamaterials. Here, we describe their theoretical basis and topical features observed in microwave experiments. Beyond properties of tunability, such composite “plasma metamaterials” work well as nonlinear and high-energy-carrier metamaterials, unlike conventional solid-state metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Sihvola (ed.), Advances in Electromagnetics of Complex Media and Metamaterials (Kluwer, Dordrecht, 2002)

    Google Scholar 

  2. L. Solymar, E. Shamonina, Waves in Metamaterials (Oxford University Press, Oxford, 2009)

    Google Scholar 

  3. A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Planar photonics with metasurfaces. Science 339, 1232009-1–1232009-6 (2013)

    Article  Google Scholar 

  4. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)

    Article  Google Scholar 

  5. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994)

    Google Scholar 

  6. O. Sakai, K. Tachibana, Plasmas as metamaterials: a review. Plasma Sources Sci. Technol. 21, 013001-1–013001-18 (2012)

    Article  Google Scholar 

  7. O. Sakai, J. Maeda, T. Shimomura, K. Urabe, Functional composites of plasmas and metamaterials: flexible waveguides, and variable attenuators with controllable phase shift. Phys. Plasmas 20, 073506-1–073506-9 (2015)

    Google Scholar 

  8. O. Sakai, Y. Yasaka, R. Itatani, High radial confinement mode induced by dc limiter biasing in the HIEI tandem mirror. Phys. Rev. Lett. 70, 4071–4074 (1994)

    Article  Google Scholar 

  9. J.L. Walsh, F. Iza, N.B. Janson, M.G. Kong, Chaos in atmospheric-pressure plasma jets. Plasma Sources Sci. Technol. 21, 034008-1–034008-8 (2012)

    Google Scholar 

  10. T.H. Stix, The Theory of Plasma Waves (McGraw-Hill, New York, 1962)

    Google Scholar 

  11. V.L. Ginzburg, The Propagation of Electromagnetic Waves in Plasma (Pergamon Press, Oxford, 1964)

    Google Scholar 

  12. D.G. Swanson, Plasma Waves (Academic Press, Boston, 1989)

    Book  Google Scholar 

  13. R.J. Vidmar, On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers. IEEE Trans. Plasma Sci. 18, 733–741 (1990)

    Article  Google Scholar 

  14. J. Faith, S.P. Kuo, J. Huang, Frequency downshifting and trapping of an electromagnetic wave by a rapidly created spatially periodic plasma. Phys. Rev. E 55, 1843–1851 (1997)

    Article  CAS  Google Scholar 

  15. D.K. Kalluri, Electromagnetics of Complex Media (CRC Press, Boca Raton, 1998)

    Google Scholar 

  16. H. Hojo, A. Mase, Dispersion relation of electromagnetic waves in one-dimensional plasma phonic crystals. J. Plasma Fusion Res. 80, 89–90 (2004)

    Article  CAS  Google Scholar 

  17. B. Wang, M.A. Cappelli, A plasma photonic crystal bandgap device. Appl. Phys. Lett. 108, 161101-1–161101-4 (2016)

    Google Scholar 

  18. A.W. Trivelpiece, R.W. Gould, Surface charge waves in cylindrical plasma columns. J. Appl. Phys. 30, 1784–1793 (1959)

    Article  Google Scholar 

  19. O. Sakai, T. Shimomura, K. Tachibana, Negative refractive index designed in a periodic composite of lossy microplasmas and microresonators. Phys. Plasmas 17, 123504-1–123504-9 (2010)

    Google Scholar 

  20. A. Iwai, Y. Nakamura, O. Sakai, Enhanced generation of a second-harmonic wave in a composite of metamaterial and microwave plasma with various permittivities. Phys. Rev. E. 92, 033105 (2015)

    Google Scholar 

  21. P. K. Singh, J. Hopwood, S. Sonkusale, Metamaterials for remote generation of spatially controllable two dimensional array of microplasma. Sci. Reports. 4, 5964-1-5 (2014)

    Google Scholar 

  22. Y.P. Razer, Gas Discharge Physics (Springer-Verlag, Berlin, 1991)

    Book  Google Scholar 

  23. I.H. Hutchinson, Principles of Plasma Diagnostics (Cambridge University Press, Cambridge, 1987)

    Google Scholar 

  24. D.R. Smith, D.C. Vier, Th Koschny, C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617-1–036617-11 (2005)

    Google Scholar 

  25. A. Iwai, Y. Nakamura, O. Sakai, Experimental observation and model analysis of second-harmonic generation in a plasma-metamaterial composite. Appl. Phys. Express. 8, 056201-1-4 (2015)

    Article  Google Scholar 

  26. O. Sakai, Y. Nakamura, A. Iwai, S. Iio, Negative-permittivity plasma generation in negative-permeability space with high-energy metamaterials. Plasma Sources Sci. Technol. 25, 055019-1–055019-10 (2016)

    Article  Google Scholar 

  27. I.V. Shadrivov, P.V. Kapitanova, S.I. Maslovski, Y.S. Kivshar, Metamaterials controlled with light. Phys. Rev. Lett. 109, 083902-1–083902-4 (2012)

    Article  Google Scholar 

  28. T. Sakaguchi, O. Sakai, K. Tachibana, Photonic bands in two-dimensional microplasma arrays. II. Band gaps observed in millimeter and sub-terahertz ranges. J. Appl. Phys. 101, 073305-1–073305-7 (2007)

    Article  Google Scholar 

  29. O. Sakai, T. Sakaguchi, K. Tachibana, Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structures of electromagnetic waves. J. Appl. Phys. 101, 073304-1–073304-9 (2007)

    Google Scholar 

  30. O. Sakai, T. Sakaguchi, T. Naito, D.-S. Lee, K. Tachibana, Characteristics of metamaterials composed of microplasma arrays. Plasma Phys. Contr. Fusion. 49, B453–B463 (2007)

    Article  CAS  Google Scholar 

  31. T. Naito, O. Sakai, K. Tachibana, Experimental verification of complex dispersion relation in lossy photonic crystals. Appl. Phys. Express 1, 066003-1–066003-3 (2008)

    Article  Google Scholar 

  32. O. Sakai, T. Naito, K. Tachibana, Experimental and numerical verification of microplasma assembly for novel electromagnetic media. Phys. Plasmas. 17, 057102-1-9 (2010)

    Article  Google Scholar 

  33. O. Sakai, Transition between positive and negative permittivity in field-dependent metamaterial. J. Appl. Phys. 109, 084914-1–084914-6 (2011)

    Google Scholar 

  34. M. Kadic, T. Buckmann, R. Schittny, M. Wegener, Metamaterials beyond electromagnetism. Rep. Prog. Phys. 76, 126501-1-34 (2013)

    Article  Google Scholar 

  35. I. Adamovich, S.D. Baalrud, A. Bogaerts, P.J. Bruggeman, M. Cappelli, V. Colombo, U. Czarnetzki, U. Ebert, J.G. Eden, P. Favia, D.B. Graves, S. Hamaguchi, G. Hieftje, M. Hori, I.D. Kaganovich, U. Kortshagen, M.J. Kushner, N.J. Mason, S. Mazouffre, S. Mededovic Thagard, H.-R. Metelmann, A. Mizuno, E. Moreau, A.B. Murphy, B.A. Niemira, G.S. Oehrlein, Z. Lj Petrovic, L.C. Pitchford, Y.-K. Pu, S. Rauf, O. Sakai, S. Samukawa, S. Starikovskaia, J. Tennyson, K. Terashima, M.M. Turner, M.C.M. van de Sanden, A. Vardelle, The 2017 plasma roadmap: low temperature plasma science and technology. J. Phys. D Appl. Phys. 50, 232001-1–232001-46 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Sakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sakai, O., Iwai, A. (2019). Functional Composites of Discharge Plasmas and Solid Metamaterials. In: Sakoda, K. (eds) Electromagnetic Metamaterials. Springer Series in Materials Science, vol 287. Springer, Singapore. https://doi.org/10.1007/978-981-13-8649-7_10

Download citation

Publish with us

Policies and ethics