Skip to main content

Efficiency Analysis of Crude Versus Pure Cellulase in Industry

  • Chapter
  • First Online:
Biofuel Production Technologies: Critical Analysis for Sustainability

Abstract

Many industries including fermentation, pulp and paper industry, brewing sector, fermentation, food and animal feed industry, and detergent and textile use cellulases due to its environment benign and sustainable process. Academic and industrial researches are being done and still ongoing on cellulases due to its enormous industrial application and make these processes green. In this article, extensive review is performed on the use of cellulases in the industrial sector in both crude and pure form. It has been observed that crude cellulases are preferred in the industrial sector due to its low cost and stimulate the process using impurities present in enzymes. Pure cellulases are mainly used in laboratories and are case specific as they are costly to use in industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya S, Chaudhary A (2012) Bioprospecting thermophiles for cellulase production: a review. Braz J Microbiol 43(3):844–856

    Article  CAS  Google Scholar 

  • Albrecht S, van Muiswinkel GC, Schols HA, Voragen AG, Gruppen H (2009) Introducing capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) for the characterization of konjac glucomannan oligosaccharides and their in vitro fermentation behavior. J Agric Food Chem 57(9):3867–3876

    Article  CAS  Google Scholar 

  • Al-Ghazzewi FH, Tester RF (2012) Efficacy of cellulase and mannanase hydrolysates of konjac glucomannan to promote the growth of lactic acid bacteria. J Sci Food Agric 92(11):2394–2396

    Article  CAS  Google Scholar 

  • Al-Ghazzewi FH, Khanna S, Tester RF, Piggott J (2007) The potential use of hydrolysed konjac glucomannan as a prebiotic. J Sci Food Agric 87(9):1758–1766

    Article  CAS  Google Scholar 

  • Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41(24):8075–8098

    Article  CAS  Google Scholar 

  • Alvaro A, Sola R, Rosales R, Ribalta J, Anguera A, Masana L, Vallvé JC (2008) Gene expression analysis of a human enterocyte cell line reveals downregulation of cholesterol biosynthesis in response to short-chain fatty acids. IUBMB Life 60(11):757–764

    Article  CAS  Google Scholar 

  • Annamalai N, Rajeswari MV, Elayaraja S, Balasubramanian T (2013) Thermostable, haloalkaline cellulase from Bacillus halodurans CAS 1 by conversion of lignocellulosic wastes. Carbohydr Polym 94(1):409–415

    Article  CAS  Google Scholar 

  • Baker JO, McCarley JR, Lovett R, Yu CH, Adney WS, Rignall TR et al (2005) Catalytically enhanced endocellulase Cel5A from Acidothermus cellulolyticus. Appl Biochem Biotechnol 121(1-3):129–148

    Article  Google Scholar 

  • Bernardez TD, Lyford K, Hogsett DA, Lynd LR (1993) Adsorption of Clostridium thermocellum cellulases onto pretreated mixed hardwood, Avicel, and lignin. Biotechnol Bioeng 42(7):899–907

    Article  CAS  Google Scholar 

  • Bhanja T, Kumari A, Banerjee R (2009) Enrichment of phenolics and free radical scavenging property of wheat koji prepared with two filamentous fungi. Bioresour Technol 100(11):2861–2866

    Article  CAS  Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18(5):355–383

    Article  CAS  Google Scholar 

  • Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res:1–17

    Google Scholar 

  • Canales AM, Garza R, Sierra JA, Arnold R (1988) The application of a beta-glucanase with additional side activities in brewing. Tech Quar Mast Brewers Assoc Am (USA) 25:27–31

    Google Scholar 

  • Chalal D (1985) Solid state fermentation with Trichoderma reesei for cellulase production. Appl Environ Microbiol 49(1):205–210

    Article  Google Scholar 

  • Chen HL, Fan YH, Chen ME, Chan Y (2005) Unhydrolyzed and hydrolyzed konjac glucomannans modulated cecal and fecal microflora in Balb/c mice. Nutrition 21(10):1059–1064

    Article  CAS  Google Scholar 

  • Connolly ML, Lovegrove JA, Tuohy KM (2010) Konjac glucomannan hydrolysate beneficially modulates bacterial composition and activity within the faecal microbiota. J Funct Foods 2(3):219–224

    Article  CAS  Google Scholar 

  • Cortez JM, Ellis J, Bishop DP (2002) Using cellulases to improve the dimensional stability of cellulosic fabrics. Text Res J 72(8):673–680

    Article  CAS  Google Scholar 

  • Cowan WD (1996) Animal feed. In: Godfrey T, West S (eds) Industrial enzymology, 2nd edn. Macmillan Press, London, pp 360–371

    Google Scholar 

  • De Carvalho LMJ, De Castro IM, Da Silva CAB (2008) A study of retention of sugars in the process of clarification of pineapple juice (Ananas comosus, L. Merril) by micro-and ultra-filtration. J Food Eng 87(4):447–454

    Article  CAS  Google Scholar 

  • De Faveri D, Aliakbarian B, Avogadro M, Perego P, Converti A (2008) Improvement of olive oil phenolics content by means of enzyme formulations: Effect of different enzyme activities and levels. Biochem Eng J 41(2):149–156

    Article  CAS  Google Scholar 

  • Desvaux M (2005) Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev 29(4):741–764

    Article  CAS  Google Scholar 

  • Dhillon GS, Kaur S, Brar SK, Verma M (2012) Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase bioproduction through solid-state fermentation. Ind Crop Prod 38:6–13

    Article  CAS  Google Scholar 

  • Dienes D, Egyhazi A, Reczey K (2004) Treatment of recycled fiber with Trichoderma cellulases. Ind Crop Prod 20(1):11–21

    Article  CAS  Google Scholar 

  • Do YK, Kim JM, Chang SM, Hwang JH, Kim WS (2009) Enhancement of polyphenol bio-activities by enzyme reaction. J Mol Catal B Enzym 56(2-3):173–178

    Article  CAS  Google Scholar 

  • Dogaris I, Karapati S, Mamma D, Kalogeris E, Kekos D (2009) Hydrothermal processing and enzymatic hydrolysis of sorghum bagasse for fermentable carbohydrates production. Bioresour Technol 100(24):6543–6549

    Article  CAS  Google Scholar 

  • Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2(7):541–551

    Article  CAS  Google Scholar 

  • Dourado F, Bastos M, Mota M, Gama FM (2002) Studies on the properties of Celluclast/Eudragit L-100 conjugate. J Biotechnol 99(2):121–131

    Article  CAS  Google Scholar 

  • Escobar MO, Hue NV (2008) Temporal changes of selected chemical properties in three manure–Amended soils of Hawaii. Bioresour Technol 99(18):8649–8654

    Article  CAS  Google Scholar 

  • Fantozzi P, Petruccioli G, Montedoro G (1977) Trattamenti con additivi enzimatici alle paste di oliva sottoposte ad estrazione per pressione unica: influenze delle cultivars, dell’epoca di raccolta e della conservazione. Grasse 54:381–388

    CAS  Google Scholar 

  • Fontaine S, Bardoux G, Benest D, Verdier B, Mariotti A, Abbadie L (2004) Mechanisms of the priming effect in a savannah soil amended with cellulose. Soil Sci Soc Am J 68(1):125–131

    Article  CAS  Google Scholar 

  • Fortun-Lamothe L, Gidenne T, Debray L, Chalaye F. (2001). Intake regulation, performances and health status according to feeding strategy around weaning. In Proceendings of the 2nd Meeting of COST (Vol. 848, pp. 40–41).

    Google Scholar 

  • Galante YM, DeConti A, Monteverdi R (1998) Application of trichoderma enzymes in food and feed industries. In: Harman GF, Kubicek CP (eds) Trichoderma and gliocladium—enzymes, vol. 2 of Biological control and commercial applications. Taylor & Francis, London, pp 311–326

    Google Scholar 

  • Ghosh P, Singh A (1993) Physicochemical and biological treatments for enzymatic/microbial conversion of lignocellulosic biomass. In: Advances in applied microbiology, vol 39. Academic Press, New York, pp 295–333

    Google Scholar 

  • Godfrey T, West S (1996) Textiles. Indus Enzymol:360–371

    Google Scholar 

  • Graham H, Balnave D (1995) Dietary enzymes for increasing energy availability. In: Wallace RJ, Chesson A (eds) Biotechnology in animal feeds and animal feedings. VHC, Weinheim, pp 296–309

    Google Scholar 

  • Gupta R, Khasa YP, Kuhad RC (2011) Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydr Polym 84(3):1103–1109

    Article  CAS  Google Scholar 

  • Han W, He M (2010) The application of exogenous cellulase to improve soil fertility and plant growth due to acceleration of straw decomposition. Bioresour Technol 101(10):3724–3731

    Article  CAS  Google Scholar 

  • Harrison MJ, Nouwens AS, Jardine DR, Zachara NE, Gooley AA, Nevalainen H, Packer NH (1998) Modified glycosylation of cellobiohydrolase I from a high cellulase-producing mutant strain of Trichoderma reesei. Eur J Biochem 256(1):119–127

    Article  CAS  Google Scholar 

  • Headon DR, Walsh G (1994) The industrial production of enzymes. Biotechnol Adv 12(4):635–646

    Article  CAS  Google Scholar 

  • Hebeish A, Ibrahim NA (2007) The impact of frontier sciences on textile industry. Colourage 54(4):41–55

    Google Scholar 

  • Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7(5):637–644

    Article  CAS  Google Scholar 

  • Huang W, Niu H, Li Z, He Y, Gong W, Gong G (2008) Optimization of ellagic acid production from ellagitannins by co-culture and correlation between its yield and activities of relevant enzymes. Bioresour Technol 99(4):769–775

    Article  CAS  Google Scholar 

  • Ibrahim NA, El-Badry K, Eid BM, Hassan TM (2011) A new approach for biofinishing of cellulose-containing fabrics using acid cellulases. Carbohydr Polym 83(1):116–121

    Article  CAS  Google Scholar 

  • Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sust Energ Rev 33:188–203

    Article  CAS  Google Scholar 

  • Kanmani R, Vijayabaskar P, Jayalakshmi S (2011) Saccharification of banana-agro waste and clarification of apple juice by cellulase enzyme produced from Bacillus pumilis. World Appl Sci J 12(11):2120–2128

    Google Scholar 

  • Karmakar M, Ray RR (2011) Current trends in research and application of microbial cellulases. Res J Microbiol 6(1):41

    Article  CAS  Google Scholar 

  • Kotaka A, Bando H, Kaya M, Kato-Murai M, Kuroda K, Sahara H et al (2008) Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. J Biosci Bioeng 105(6):622–627

    Article  CAS  Google Scholar 

  • Kuhad RC, Singh A (1993) Lignocellulose biotechnology: current and future prospects. Crit Rev Biotechnol 13(2):151–172

    Article  CAS  Google Scholar 

  • Kuhad RC, Singh A, Eriksson KEL (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. In: Biotechnology in the pulp and paper industry. Springer, Berlin/Heidelberg, pp 45–125

    Chapter  Google Scholar 

  • Kuhad RC, Manchanda M, Singh A (1999) Hydrolytic potential of extracellular enzymes from a mutant strain of Fusarium oxysporum. Bioprocess Eng 20(2):133–135

    CAS  Google Scholar 

  • Kuhad RC, Mehta G, Gupta R, Sharma KK (2010a) Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass Bioenergy 34(8):1189–1194

    Article  CAS  Google Scholar 

  • Kuhad RC, Gupta R, Khasa YP (2010b) Bioethanol production from lignocellulosic biomass: an overview. In: Lal B (ed) Wealth from waste. Teri Press, New Delhi, India

    Google Scholar 

  • Kumar R, Wyman CE (2009) Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies. Biotechnol Bioeng 102(6):1544–1557

    Article  CAS  Google Scholar 

  • Lee D, Yu AH, Saddler JN (1995) Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates. Biotechnol Bioeng 45(4):328–336

    Article  CAS  Google Scholar 

  • Lewis GE, Hunt CW, Sanchez WK, Treacher R, Pritchard GT, Feng P (1996) Effect of direct-fed fibrolytic enzymes on the digestive characteristics of a forage-based diet fed to beef steers. J Anim Sci 74(12):3020–3028

    Article  CAS  Google Scholar 

  • Licht FO (2006) World ethanol markets: the outlook to 2015, Tunbridge Wells, Agra Europe Special Report, UK

    Google Scholar 

  • Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96(18):1967–1977

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    Article  CAS  Google Scholar 

  • Lynd LR, Van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5):577–583

    Article  CAS  Google Scholar 

  • Mai C, Kües U, Militz H (2004) Biotechnology in the wood industry. Appl Microbiol Biotechnol 63(5):477–494

    Article  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  CAS  Google Scholar 

  • Oksanen J, Ahvenainen J, Home S (1985) Microbial cellulase for improving filterability of wort and beer. J Inst Brew 91(3):130–130

    Google Scholar 

  • Pascual JJ (2001) Recent advances on early weaning and nutrition around weaning. In Proceedings of the 2nd Meeting of COST (Vol. 848, pp. 31–36).

    Google Scholar 

  • Pere J, Siika-aho M, Buchert J, Viikari L (1995) Effects of purified T. reesei cellulases on the fiber properties of kraft pulp. TAPPI J 78(6):71–78

    CAS  Google Scholar 

  • Rai P, Majumdar GC, Gupta SD, De S (2007) Effect of various pretreatment methods on permeate flux and quality during ultrafiltration of mosambi juice. J Food Eng 78(2):561–568

    Article  CAS  Google Scholar 

  • Rodrigues AL, Cavalett A, Lima AO (2010) Enhancement of Escherichia coli cellulolytic activity by co-production of beta-glucosidase and endoglucanase enzymes. Electron J Biotechnol 13(5):5–6

    Google Scholar 

  • Sakai S, Tsuchida Y, Okino S, Ichihashi O, Kawaguchi H, Watanabe T, Inui M, Yukawa H (2007) Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R. Appl Environ Microbiol 73(7):2349–2353

    Article  CAS  Google Scholar 

  • Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194

    Article  CAS  Google Scholar 

  • Sheehan J, Himmel M (1999) Enzymes, energy, and the environment: a strategic perspective on the US Department of Energy’s research and development activities for bioethanol. Biotechnol Prog 15(5):817–827

    Article  CAS  Google Scholar 

  • Shrivastava B, Thakur S, Khasa YP, Gupte A, Puniya AK, Kuhad RC (2011) White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation 22(4):823–831

    Article  CAS  Google Scholar 

  • Singh A, Kumar PKR, Schügerl K (1991) Adsorption and reuse of cellulases during saccharification of cellulosic materials. J Biotechnol 18(3):205–212

    Article  CAS  Google Scholar 

  • Singh A, Kuhad RC, Ward OP (2007) Industrial application of microbial cellulases. In: Kuhad RC, Singh A (eds) Lignocellulose biotechnology: future prospects. I. K. International Publishing House, New Delhi, pp 345–358

    Google Scholar 

  • Sohail M, Siddiqi R, Ahmad A, Khan SA (2009) Cellulase production from Aspergillus niger MS82: effect of temperature and pH. New Biotechnol 25(6):437–441

    Article  CAS  Google Scholar 

  • Sreenath HK, Shah AB, Yang VW, Gharia MM, Jeffries TW (1996) Enzymatic polishing of jute/cotton blended fabrics. J Ferment Bioeng 81(1):18–20

    Article  CAS  Google Scholar 

  • Srivastava N, Srivastava M, Mishra PK, Singh P, Ramteke PW (2015) Application of cellulases in biofuels industries: an overview. J Biofuels Bioenergy 1(1):55–63

    Article  Google Scholar 

  • Stork G, Puls J (1996) Change in properties of different recycled pulps by endoglucanase treatment. In: Proceedings of the international conference on biotechnology in the pulp and paper industry: recent advances in applied and fundamental research (Vol. 1, pp. 145–150). Facultas-Universitatsverlag

    Google Scholar 

  • Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases-production, applications and challenges. J Sci Ind Res 64(11):832–844

    CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  Google Scholar 

  • Tejada M, Gonzalez JL, García-Martínez AM, Parrado J (2008) Application of a green manure and green manure composted with beet vinasse on soil restoration: effects on soil properties. Bioresour Technol 99(11):4949–4957

    Article  CAS  Google Scholar 

  • Tu M, Chandra RP, Saddler JN (2007) Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnol Prog 23(2):398–406

    Article  CAS  Google Scholar 

  • Uhlig H (1998) Industrial enzymes and their applications. Wiley, Chicester

    Google Scholar 

  • Walsh G, Headon D (1994) Protein biotechnology. Wiley, Chicester

    Google Scholar 

  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96(18):1959–1966

    Article  CAS  Google Scholar 

  • Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86(1):88–98

    Article  CAS  Google Scholar 

  • Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94(4):611–617

    Article  CAS  Google Scholar 

  • Zhang YHP, Himmel M, Mielenz JR (2006) Outlook for cellulase improvement: Screening and selection strategies. Biotechnol Adv 24:452–481

    Article  CAS  Google Scholar 

  • Zhu Z, Sathitsuksanoh N, Zhang YHP (2009) Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulase desorption for potential recycling. Analyst 134:2267–2272

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tushar, M.S.H.K., Dutta, A. (2020). Efficiency Analysis of Crude Versus Pure Cellulase in Industry. In: Srivastava, N., Srivastava, M., Mishra, P., Gupta, V. (eds) Biofuel Production Technologies: Critical Analysis for Sustainability . Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-8637-4_10

Download citation

Publish with us

Policies and ethics