Skip to main content

Effect of Seed Priming on Seed Dormancy and Vigor

  • Chapter
  • First Online:
Priming and Pretreatment of Seeds and Seedlings

Abstract

Seed dormancy is a prerequisite for preservation and cultivation of crops. The genetic characteristics of seeds and external environmental conditions combinedly influence the seed vigority. Therefore, seed dormancy and vigor can modify the growth, development, and yield capacity of both agronomic and horticultural crops. There are some physiological and biochemical stimulators by which seed dormancy period and intensity are regulated. Seed priming significantly regulates the different types of seed dormancy as well as enhances the vigority. Thus, different seed priming treatments can be potentially used in crop production to increase the uniformity of germination along with better growth and developments. This chapter will discuss about the seed priming-induced regulation of seed dormancy and vigor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amen RD (1963) The concept of seed dormancy. Am Sci 51(4):408–424

    Google Scholar 

  • Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography, and, evolution of dormancy and germination. Elsevier, San Diego

    Google Scholar 

  • Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14(1):1–16

    Article  Google Scholar 

  • Baskin CC, Baskin JM (2005) Underdeveloped embryos in dwarf seeds and implications for assignment to dormancy class. Seed Sci Res 15(4):357–360

    Article  Google Scholar 

  • Batlla D, Benech-Arnold RL (2010) Predicting changes in dormancy level in natural seed soil banks. Plant Mol Biol 73(1–2):3–13

    Article  CAS  Google Scholar 

  • Chiang GC, Barua D, Kramer EM, Amasino RM, Donohue K (2009) Major flowering time gene, FLOWERING LOCUS C, regulates seed germination in Arabidopsis thaliana. Proc Natl Acad Sci 106(28):11661–11666

    Article  CAS  Google Scholar 

  • Cohn MA, Butera DL (1982) Seed dormancy in red rice (Oryza sativa). II. Response to cytokinins. Weed Sci 30(2):200–205

    Article  CAS  Google Scholar 

  • Corbineau F, Bagniol S, Côme D (1990) Sunflower (Helianthus annuus L.) seed dormancy and its regulation by ethylene. Isr J Bot 39(4–6):313–325

    CAS  Google Scholar 

  • Esashi Y (1991) Ethylene and seed germination. In: Mattoo AK, Suttle JC (eds) The plant hormone ethylene. CRC Press, Boca Raton, pp 133–157

    Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171(3):501–523

    Article  CAS  Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387

    Article  CAS  Google Scholar 

  • Footitt S, Douterelo-Soler I, Clay H, Finch-Savage WE (2011) Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. Proc Natl Acad Sci 108(50):20236–20241

    Article  CAS  Google Scholar 

  • Ghassemi-Golezani K, Sheikhzadeh-Mosaddegh P, Valizadeh M (2008) Effects of hydro-priming duration and limited irrigation on field performance of chickpea. Res J Seed Sci 1:34–40

    Article  Google Scholar 

  • Ghassemi-Golezani K, Chadordooz-Jeddi A, Nasrollahzadeh S, Moghaddam M (2010) Influence of hydro-priming duration on field performance of pinto bean (Phaseolus vulgaris L.) cultivars. Afr J Agric Res 5:893–897

    Google Scholar 

  • Graeber KAI, Nakabayashi K, Miatton E, Leubner-Metzger GERHARD, Soppe WJ (2012) Molecular mechanisms of seed dormancy. Plant Cell Environ 35(10):1769–1786

    Article  CAS  Google Scholar 

  • Harper JL (1957) The ecological significance of dormancy and its importance in weed control. In: Proceedings of the 4th international congress of crop protection, vol 1, pp 415–420, Braunschweig (1960)

    Google Scholar 

  • He H, de Souza Vidigal D, Snoek LB, Schnabel S, Nijveen H, Hilhorst H, Bentsink L (2014) Interaction between parental environment and genotype affects plant and seed performance in Arabidopsis. J Exp Bot 65(22):6603–6615

    Article  CAS  Google Scholar 

  • Hepher A, Roberts JA (1985) The control of seed germination in Trollius ledebouri: the breaking of dormancy. Planta 166(3):314–320

    Article  CAS  Google Scholar 

  • Hilhorst HW (1995) A critical update on seed dormancy. I. Primary dormancy. Seed Sci Res 5(2):61–73

    Article  CAS  Google Scholar 

  • Holdsworth MJ, Bentsink L, Soppe WJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179(1):33–54

    Article  CAS  Google Scholar 

  • Hsu CC, Chen CL, Chen JJ, Sung JM (2003) Accelerated aging-enhanced lipid peroxidation in bitter gourd seeds and effects of priming and hot water soaking treatments. Sci Hortic 98(3):201–212

    Article  CAS  Google Scholar 

  • Jacobsen JV, Pressman E (1979) A structural study of germination in celery (Apium graveolens L.) seed with emphasis on endosperm breakdown. Planta 144(3):241–248

    Article  CAS  Google Scholar 

  • KeÇpczyński J, KeÇpczyńska E (1997) Ethylene in seed dormancy and germination. Physiol Plant 101(4):720–726

    Article  Google Scholar 

  • Khan A, Khalil SK, Khan AZ, Marwat KB, Afzal A (2008) The role of seed priming in semi-arid area for mung bean phenology and yield. Pak J Bot 40(6):2471–2480

    Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5(1):33–36

    Article  CAS  Google Scholar 

  • Krock B, Schmidt S, Hertweck C, Baldwin IT (2002) Vegetation-derived abscisic acid and four terpenes enforce dormancy in seeds of the post-fire annual, Nicotiana attenuata. Seed Sci Res 12(4):239–252

    Article  CAS  Google Scholar 

  • Lang GA (1987) Endo-, para-and ecodormancy: physiological terminology and classification for dormancy research. Hortic Sci 22:271–277

    Google Scholar 

  • Lang GA, Early JD, Arroyave NG, Darnell RL, Martin GC, Stutte GW (1985) Dormancy: toward a reduced universal terminology. HortScience 20:809–811

    Google Scholar 

  • Linkies A, Leubner-Metzger G (2012) Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep 31(2):253–270

    Article  CAS  Google Scholar 

  • Mahmoodi TM, Ghassemi-Golezani K, Habibi D, Paknezhad F, Ardekani MR (2011) Effect of hydro-priming duration on seedling vigour and field establishment of maize (Zea mays L.). Res Crops 12(2):341–345

    Google Scholar 

  • Matilla AJ (2000) Ethylene in seed formation and germination. Seed Sci Res 10(2):111–126

    Article  CAS  Google Scholar 

  • Mercado MFO, Fernandez PG (2002) Solid matrix priming of soybean seeds. Philipp J Crop Sci 27(2):27–35

    Google Scholar 

  • Mereddy R (2015) Solid matrix priming improves seedling vigor of okra seeds. Proc Oklahoma Acad Sci 80:33–37

    Google Scholar 

  • Mok DW, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Biol 52(1):89–118

    Article  CAS  Google Scholar 

  • Naba’ee M, Roshandel P, Khani MA (2013) The effects of plant growth regulators on breaking seed dormancy in Silybum marianum L. J Cell Tissue Res 4(1):45–54

    Google Scholar 

  • Nambara E, Marion-Poll A (2003) ABA action and interactions in seeds. Trends Plant Sci 8(5):213–217

    Article  CAS  Google Scholar 

  • Neamatollahi E, Darban SA (2010) Investigation of hydropriming and osmopriming effects on canola (Brassica napus L.) cultivars. Int J Agric Res 5:87–92

    Google Scholar 

  • Née G, Xiang Y, Soppe WJ (2017) The release of dormancy, a wake-up call for seeds to germinate. Curr Opin Plant Biol 35:8–14

    Article  Google Scholar 

  • Nikolaeva MG, Rasumova MV, Gladkova VN (1985) Pravocnik po prorascivanij pokojascichsja semjan. In: Danilova MF (ed) Reference book on dormant seed germination. ‘Nauka’ Publishers, Leningrad (in Russian)

    Google Scholar 

  • Nikolaeva MG, Lyanguzova IV, Pozdova LM (1999) Biology of seeds. V.L. Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg (in Russian with English summary and English table of contents)

    Google Scholar 

  • Preston CA, Betts H, Baldwin IT (2002) Methyl jasmonate as an allelopathic agent: sagebrush inhibits germination of a neighboring tobacco, Nicotiana attenuata. J Chem Ecol 28(11):2343–2369

    Article  CAS  Google Scholar 

  • Steber CM, McCourt P (2001) A role for brassinosteroids in germination in Arabidopsis. Plant Physiol 125(2):763–769

    Article  CAS  Google Scholar 

  • Takeuchi Y, Worsham AD, Awad AE (1991) Effects of brassinolide on conditioning and germination of witchweed (Striga asiatica) seeds. In: Brassinosteroids, ACS Symposium series. American Chemical Society, Washington, DC

    Google Scholar 

  • Takeuchi Y, Omigawa Y, Ogasawara M, Yoneyama K, Konnai M, Worsham AD (1995) Effects of brassinosteroids on conditioning and germination of clover broomrape (Orobanche minor) seeds. Plant Growth Regul 16(2):153–160

    Article  CAS  Google Scholar 

  • Wang HY, Chen CL, Sung JM (2003) Both warm water soaking and matriconditioning treatments enhance anti-oxidation of bitter gourd seeds germinated at sub-optimal temperature. Seed Sci Technol 31(1):47–56

    Article  CAS  Google Scholar 

  • Yamaguchi T, Wakizuka T, Hirai K, Fujii S, Fujita A (1987) Stimulation of germination in aged rice seeds by pretreatment with brassinolide. Proc Plant Growth Regul Soc Am 14:26–27

    Google Scholar 

  • Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16(2):367–378

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sajjad Hussain or Shakeel Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rao, M.J. et al. (2019). Effect of Seed Priming on Seed Dormancy and Vigor. In: Hasanuzzaman, M., Fotopoulos, V. (eds) Priming and Pretreatment of Seeds and Seedlings. Springer, Singapore. https://doi.org/10.1007/978-981-13-8625-1_6

Download citation

Publish with us

Policies and ethics