Skip to main content

Data Mining-Based Student’s Performance Evaluator

  • Conference paper
  • First Online:
Intelligent Communication, Control and Devices

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 989))

Abstract

This paper is based on the study of different data mining techniques that are used to analyze and predict students’ academic performance. The data mining application in education is the most promising tool for educational participation. The educational institution can apply this concept for students’ performance analysis. In this study, the authors have collected students’ academic data and three data mining algorithms related to classification, i.e., Naive Bayes, Decision Tree, and Convolutional Neural Network were used on the dataset. The prediction performance of three classifiers is compared and measured. This study will help educational institutes improve student academic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Essa, A., Ayad, H.: Student success system: risk analytics and data visualization using ensembles of predictive models. In: Paper Presented at the 2nd International Conference on Learning Analytics and Knowledge, Vancouver (2012)

    Google Scholar 

  2. Xindong, W., Vipin Kumar, J., Quinlan, R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A.F.M., Liu, B., Yu, P.S., Zhou, Z.-H., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)

    Article  Google Scholar 

  3. Baker, R.S., Corbett, A.T., Koedinger, K.R.: Detecting student misuse of intelligent tutoring systems. In: Proceedings of the 7th International Conference on Intelligent Tutoring Systems, pp. 531–540 (2004)

    Chapter  Google Scholar 

  4. Zaïane, O.: Building a recommender agent for e-learning systems. In: Proceedings of the International Conference on Computers in Education, pp. 55–59 (2002)

    Google Scholar 

  5. Kotsiantis, S.B.: Use of machine learning techniques for educational proposes: a decision support system for forecasting students grades. Artif. Intell. Rev. 37(4), 331–344 (2012)

    Article  Google Scholar 

  6. Hongbo, D., Yizhou, S., Yi, C., Jiawei, H.: Probabilistic models for classification. In: Data Classification, pp. 65–86. Chapman and Hall/CRC (2014)

    Google Scholar 

  7. Romero, C., Ventura, S.: Data mining in education. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 3(1), 12–27 (2013)

    Article  Google Scholar 

  8. Araque, F., Roldan, C., Salguero, A.: Factors influencing university dropout rates. J. Comput. Educ. 53, 563–574 (2009)

    Article  Google Scholar 

  9. Baker, R.S.J.D.: Data mining for education. In: McGaw, B., Peterson, P., Baker, E. (eds.) International Encyclopedia of Education, 3rd edn., vol. 7, pp. 112–118 (2010)

    Chapter  Google Scholar 

  10. Manzoor, U., Nefti, S.: An agent based system for activity monitoring on network-ABSAMN. Expert Syst. Appl. 36(8), 10987–10994 (2009)

    Article  Google Scholar 

  11. Alkhasawneh, R., Hobson, R.: Modeling student retention in science and engineering disciplines using neural networks. In: Proceedings of the IEEE Global Engineering Education Conference (EDUCON), pp. 660–663 (2011)

    Google Scholar 

  12. Han, J., Kamber, M.: Data Mining Concepts and Techniques, 2nd edn. Morgan Kaufmann, SanFrancisco. ISBN: 978-81-312

    Google Scholar 

  13. Quinlan, J.R.: Induction of decision trees. In: Machine Learning, vol. 1, pp. 81–106. Morgan Kaufmann (1986)

    Google Scholar 

  14. Kohavi, R., Quinlan, R.: Decision tree discovery. In: Handbook of Data Mining and Knowledge Discovery. University Press (1999)

    Google Scholar 

  15. Soman, K.P., Diwakar, S., Ajay, V.: Insight into Data Mining-Theory and Practice. Prentice Hall of India, New Delhi. ISBN: 81-203-2897-3

    Google Scholar 

  16. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning (Adaptive Competition and Machine Learning), p. 779. The MIT Press (2016)

    Google Scholar 

  17. Munakata, T.: Fundamentals of the New Artificial Intelligence: Neural, Evolutionary, Fuzzy and More, 2nd edn., p. 225. Springer, London (2008)

    Google Scholar 

  18. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learning. Evol. Intel. 1(1), 47–62 (2008). https://doi.org/10.1007/s12065-007-0002-4

    Article  Google Scholar 

  19. Prieto, A., Atencia, M., Sandoval, F.: Advances in artificial neural networks and machine learning. Neurocomputing 121, 1–4 (2013). https://doi.org/10.1016/j.neucom.2013.01.008

    Article  Google Scholar 

  20. Dalto, M.: Deep Neural Networks for Time Series Prediction with Application in Ultra-Short-Term Wind Forecasting, pp. 1657–1663. IEEE (2015)

    Google Scholar 

  21. Ferreira, A., Giraldi, G.: Convolutional neural network approaches to granite tiles classification. Expert Syst. Appl. 84, 1–11 (2017). https://doi.org/10.1016/j.eswa.2017.04.053

    Article  Google Scholar 

  22. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009). https://doi.org/10.1561/2200000006

    Article  MathSciNet  MATH  Google Scholar 

  23. Conneau, A., Schwenk, H., Barrault, L., Lecun, Y.: Very deep convolutional networks for text classification. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, vol. 1, Long Papers (2017). https://doi.org/10.18653/v1/e17-1104

  24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of Neural Networks (NIPS), Nevada, USA, pp. 1106–1114 (2012)

    Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-scale Image Recognition. Published as a conference paper at ICLR. Cornel University Library (2015)

    Google Scholar 

  26. Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J.L.: Time series classification using multi-channels deep convolutional neural networks. In: Lecture Notes in Computer Science, pp. 298–310 (2014). https://doi.org/10.1007/978-3-319-08010-9_33

    Chapter  Google Scholar 

  27. Acharya, U.R., Fujita, H., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M.: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf. Sci. 415–416, 190–198 (2017). https://doi.org/10.1016/j.ins.2017.06.027

    Article  Google Scholar 

  28. Wang, K., Zhao, Y., Xiong, Q., Fan, M., Sun, G., Ma, L., Liu, T.: Research on healthy anomaly detection model based on deep learning from multiple time-series physiological signals. Sci. Program. 2016, 1–9 (2016). https://doi.org/10.1155/2016/5642856

    Article  Google Scholar 

  29. Liu, R., Meng, G., Yang, B., Sun, C., Chen, X.: Dislocated time series convolutional neural architecture: an intelligent fault diagnosis approach for electric machine. IEEE Trans. Industr. Inf. 13(3), 1310–1320 (2017). https://doi.org/10.1109/tii.2016.2645238

    Article  Google Scholar 

  30. Meng, M., Chua, Y.J., Wouterson, E., Ong, C.P.K.: Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks. Neurocomputing 257, 128–135 (2017). https://doi.org/10.1016/j.neucom.2016.11.066

    Article  Google Scholar 

  31. Affonso, C., Rossi, A.L.D., Vieira, F.H.A., de Leon Ferreira, A.C.P.: Deep learning for biological image classification. Expert Syst. Appl. 85, 114–122 (2017). https://doi.org/10.1016/j.eswa.2017.05.039

    Article  Google Scholar 

  32. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrana, S., Darell, T.: Caffe: Convolutional Architecture for Fast Feature Embedding. Cornel University Library (2014)

    Google Scholar 

  33. Rish, I.: An empirical study of the naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3. no. 22. IBM, New York (2001)

    Google Scholar 

  34. Xu, S.: Bayesian Naïve Bayes classifiers to text classification. J. Inf. Sci. 44(1), 48–59 (2018)

    Article  Google Scholar 

  35. Arar, Ö.F., Ayan, K.: A feature dependent Naive Bayes approach and its application to the software defect prediction problem. Appl. Soft Comput. 59, 197–209 (2017)

    Article  Google Scholar 

  36. Ahmed, Md., et al.: Robustification of Naïve Bayes classifier and its application for microarray gene expression data analysis. BioMed Res. Int. 2017 (2017)

    Google Scholar 

  37. Al-khurayji, R., Sameh, A.: An effective Arabic text classification approach based on Kernel Naive Bayes classifier. Int. J. Artif. Intell. Appl. 01–10 (2017)

    Article  Google Scholar 

  38. Alshaikhdeeb, B., Ahmad, K.: Feature selection for chemical compound extraction using wrapper approach with Naive Bayes classifier. In: 2017 6th International Conference on Electrical Engineering and Informatics (ICEEI). IEEE (2017)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Department of Computer Science and Engineering, DTC, Greater Noida, India for providing student’s academic data and for the necessary permissions to use this in our research studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megha Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, R., Kumar, M., Joshi, U. (2020). Data Mining-Based Student’s Performance Evaluator. In: Choudhury, S., Mishra, R., Mishra, R., Kumar, A. (eds) Intelligent Communication, Control and Devices. Advances in Intelligent Systems and Computing, vol 989. Springer, Singapore. https://doi.org/10.1007/978-981-13-8618-3_73

Download citation

Publish with us

Policies and ethics