Skip to main content

Plant Viruses as Virus Induced Gene Silencing (VIGS) Vectors

  • Chapter
  • First Online:
Plant Biotechnology: Progress in Genomic Era

Abstract

Virus-induced gene silencing (VIGS) is widely used to analyse the gene functions in model plants and in the plant species where generation of stable genetic transformants to downregulate gene expression is laborious and time-consuming. Plant viruses serve as a suitable candidate for understanding functional genomics by their modification as Virus Induced Gene Silencing vectors. Recent advancements in genetic engineering tools have made a significant contribution to their use as vectors. Here in this chapter, we have tried to discuss about the use of various plant viruses as gene silencing vectors and the next-generation vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali, S., Nasir, I. A., Rafiq, M., Butt, S. J., Ihsan, F., Rao, A. Q., & Husnain, T. (2017). Sugarcane mosaic virus-based gene silencing in Nicotiana benthamiana. Iranian Journal of Biotechnology, 15(4), e1536.

    Google Scholar 

  • Choi, H. W., & Hwang, B. K. (2012). The pepper extracellular peroxidase CaPO2 is required for salt, drought and oxidative stress tolerance as well as resistance to fungal pathogens. Planta, 235, 1369–1382. https://doi.org/10.1007/s00425-011-1580-z.

    Article  CAS  PubMed  Google Scholar 

  • Dai, F., Zhang, C., Jiang, X., Kang, M., Yin, X., Lü, P., et al. (2012). RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals. Plant Physiology, 160, 2064–2082. https://doi.org/10.1104/pp.112.207720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, X., Kelloniemi, J., Haikonen, T., Vuorinen, A. L., Elomaa, P., Teeri, T. H., et al. (2013). Modification of Tobacco rattle virus RNA1 to serve as a VIGS vector reveals that the 29K movement protein is an RNA silencing suppressor of the virus. Molecular Plant-Microbe Interactions, 26, 503–514. https://doi.org/10.1094/MPMI-12-12-0280-R.

    Article  CAS  PubMed  Google Scholar 

  • Faivre-Rampant, O., Thomas, J., Allegre, M., Morel, J., Tharreau, D., Notteghem, J., Lebrun, M., Schaffrath, U., & Piffanelli, P. (2008). Characterization of the model system rice-Magnaporthe for the study of non host resistance in cereals. New Phytologist, 180, 592–605. https://doi.org/10.1111/j.1469-8137.2008.02621.x.

    Article  CAS  Google Scholar 

  • Gedling, C. R., Ali, E. M., Gunadi, A., et al. (2018). Improved apple latent spherical virus-induced gene silencing in multiple soybean genotypes through direct inoculation of agro-infiltrated Nicotiana benthamiana extract. Plant Methods, 14, 19. https://doi.org/10.1186/s13007-018-0286-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiriart, J. B., Aro, E. M., & Lehto, K. (2003). Dynamics of the VIGS-mediated chimeric silencing of the Nicotiana benthamiana ChlH gene and of the Tobacco mosaic virus vector. Molecular Plant-Microbe Interactions, 16, 99–106. https://doi.org/10.1094/MPMI.2003.16.2.99.

    Article  CAS  PubMed  Google Scholar 

  • Holzberg, S., Brosio, P., Gross, C., & Pogue, G. P. (2002). Barley stripe mosaic virus-induced gene silencing in a monocot plant. The Plant Journal, 30, 315–327.

    Article  CAS  Google Scholar 

  • Kanazawa, A., Inaba, J., Kasai, M., Shimura, H., & Masuta, C. (2011). RNA-mediated epigenetic modifications of an endogenous gene targeted by a viral vector: A potent gene silencing system to produce a plant that does not carry a transgene but has altered traits. Plant Signaling & Behavior, 6, 1090–1093. https://doi.org/10.4161/psb.6.8.16046.

    Article  CAS  Google Scholar 

  • Kasajima, I., Ohtsubo, N., & Sasaki, K. (2017). Combination of Cyclamen persicum Mill. floral gene promoters and chimeric repressors for the modification of ornamental traits in Toreniafournieri Lind. Horticulture Research, 4, 17008. https://doi.org/10.1038/hortres.2017.8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumagai, M. H., Donson, J., della-Cioppa, G., Harvey, D., Hanley, K., & Grill, L. K. (1995). Cytoplasmic inhibition of carotenoid biosynthesis with viral derived RNA. Proceedings of the National Academy of Sciences of the United States of America, 92, 1679–1683.

    Article  CAS  Google Scholar 

  • Li, C., Yan, J. M., Li, Y. Z., Zhang, Z. C., Wang, Q. L., & Liang, Y. (2013). Silencing the SpMPK1, SpMPK2, and SpMPK3 genes in tomato reduces abscisic acid-mediated drought tolerance. International Journal of Molecular Sciences, 14, 21983–21996. https://doi.org/10.3390/ijms141121983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Schiff, M., & Kumar, S. P. (2002). Virus-induced gene silencing in tomato. The Plant Journal, 31(6), 777–786.

    Article  CAS  Google Scholar 

  • Ratcliff, F., Martin-Hernandez, A. M., & Baulcombe, D. C. (2001). Technical advance. Tobacco rattle virus as a vector for analysis of gene function by silencing. The Plant Journal, 25, 237–245. https://doi.org/10.1046/j.0960-7412.2000.00942.x.

    Article  CAS  PubMed  Google Scholar 

  • Roger, H. (2008). Comparative plant virology (2nd ed.). Amsterdam: Elsevier Publications.

    Google Scholar 

  • Sasaki, S., Yamagishi, N., & Yoshikawa, N. (2011). Efficient virus-induced gene silencing in apple, pear and Japanese pear using Apple latent spherical virus vectors. Plant Methods, 7, 15.

    Article  CAS  Google Scholar 

  • Scofield, S. R., Huang, L., Brandt, A. S., & Gill, B. S. (2005). Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiology, 138, 2165–2173.

    Article  CAS  Google Scholar 

  • Senthil-Kumar, M., Govind, G., Kang, L., Mysore, K. S., & Udayakumar, M. (2007). Functional characterization of Nicotiana benthamiana homologs of peanut water deficit-induced genes by virus-induced gene silencing. Planta, 225, 523–539. https://doi.org/10.1007/s00425-006-0367-0.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Y., Wang, F., Zhao, J., Xie, K., Hong, Y., & Liu, Y. (2010). Virus-based microRNA expression for gene functional analysis in plants. Plant Physiology, 153, 632–641.

    Google Scholar 

  • Turnage, M. A., Muangsan, N., Peele, C. G., & Robertson, D. (2002). Geminivirus-based vectors for gene silencing in Arabidopsis. The Plant Journal, 30, 107–114.

    Article  CAS  Google Scholar 

  • Valentine, T., Shaw, J., Blok, V. C., Phillips, M. S., Oparka, K. J., & Lacomme, C. (2004). Efficient virus-induced gene silencing in roots using a modified tobacco rattle virus vector. Plant Physiology, 136, 3999–4009.

    Article  CAS  Google Scholar 

  • Wang, J. E., Li, D. W., Zhang, Y. L., Zhao, Q., He, Y. M., & Gong, Z. H. (2013). Defence responses of pepper (Capsicum annuum L.) infected with incompatible and compatible strains of Phytophthora capsici. European Journal of Plant Pathology, 136, 625–638. https://doi.org/10.1007/s10658-013-0193-8.

    Article  CAS  Google Scholar 

  • Yin, K., Han, T., Liu, G., Chen, T., Wang, Y., Yu, A. Y., et al. (2015). A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Scientific Reports, 5, 14926.

    Article  CAS  Google Scholar 

  • Zaidi, S. S.-A., & Mansoor, S. (2017). Viral vectors for plant genome engineering. Frontiers in Plant Science, 8, 539. https://doi.org/10.3389/fpls.2017.00539.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, W., Zhang, L., Wang, D., Hunter, C., Voogd, N., & Joyce, K. D. (2013). A Narcissus mosaic viral vector system for protein expression and flavonoid production. Plant Methods, 9, 28.

    Article  CAS  Google Scholar 

  • Zhao, F., Lim, S., Igori, D., Yoo, R. H., Kwon, S.-K., & Moon, J. S. (2016). Development of tobacco ring spot virus-based vectors for foreign gene expression and virus induced gene silencing in variety of plants. Virology, 492, 166–178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunny Dhir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhir, S., Srivastava, A., Yoshikawa, N., Khurana, S.M.P. (2019). Plant Viruses as Virus Induced Gene Silencing (VIGS) Vectors. In: Khurana, S., Gaur, R. (eds) Plant Biotechnology: Progress in Genomic Era. Springer, Singapore. https://doi.org/10.1007/978-981-13-8499-8_22

Download citation

Publish with us

Policies and ethics