Skip to main content

Affirmative Plant-Microbe Interfaces Toward Agroecosystem Sustainability

  • Chapter
  • First Online:
Microbiome in Plant Health and Disease

Abstract

Soil microbes are the important part of every agroecosystem in the world. They live naturally in all soils and plant systems, in which they depict their dominant existence with regard through their number, vast diversity, and their multi-dynamic functional abilities. They carry out essential life- and soil-sustaining processes such as nutrient fixation, solubilization, recycling, decomposition, acquisition, mobilization, remediation, degradation, and sequestration. Natural balance in all these processes is the key determinant of soil fertility that is represented by diverse physical, chemical, and biological soil factors. Fertile soils are characterized by diverse microbes, and they guarantee sustainability in agroecology that results in better plant health and crop productivity. Functional capabilities of microbial communities present in soils and their interaction with plant parts have been critically explored and characterized in the last few decades. So, application of these beneficial plant-microbe interactions can be used to find out a substitute and/or supplement in the present agricultural systems that are extensively dependent on synthetic chemical and inorganic fertilizers. In this chapter, we provide the comprehensive details of soil plant-microbe interactions, their role in plant health, and sustainability of agroecosystems. Further, their potential roles that can be used to establish a sustainable soil ecological environment for optimum crop growth, better development, and maximum yield in the long run are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31

    Article  Google Scholar 

  • Anand K, Kumari B, Mallick MA (2016) Phosphate solubilizing microbes: an effective and alternative approach as bio-fertilizers. Int J Pharm Sci 8(2):37–40

    CAS  Google Scholar 

  • Anderson TH (2003) Microbial eco-physiological indicators to asses soil quality. Agric Ecosyst Environ 98:285–293

    Article  Google Scholar 

  • Anonymous (2005) Millennium ecosystem assessment. Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DC

    Google Scholar 

  • Apine OA, Jadhav JP (2011) Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. J Appl Microbiol 110:1235–1244

    Article  CAS  PubMed  Google Scholar 

  • Arthee R, Marimuthu P (2016) Isolation identification and screening of culturable endophytic bacterial community in sugarcane for antimicrobial activity on major fungal pathogens. Bioscan 11:2157–2167

    CAS  Google Scholar 

  • Asano M, Wagai R (2014) Evidence of aggregate hierarchy at micro- to submicron scales in an allophanic Andisol. Geoderma 216:62–74

    Article  CAS  Google Scholar 

  • Baca BE, Elmerich C (2007) Microbial production of plant hormones. In: Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, pp 113–143

    Chapter  Google Scholar 

  • Bacilio M, Moreno M, Bashan Y (2016) Mitigation of negative effects of progressive soil salinity gradients by application of humic acids and inoculation with Pseudomonas stutzeri in a salt-tolerant and a salt-susceptible pepper. Appl Soil Ecol 107:394–404

    Article  Google Scholar 

  • Badar R, Qureshi SA (2012) Use of Trichoderma hamatum alone and in combination with rhizobial isolates as bio-fertilizer for improving the growth and strength of sunflower. J Basic Appl Sci Res 2:6307–6314

    Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98

    Article  CAS  PubMed  Google Scholar 

  • Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 225–266. https://doi.org/10.1007/978-81-322-2776-218

    Chapter  Google Scholar 

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2017) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J 34(5):454–466

    CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bakhshandeh E, Pirdashti H, Lendeh KS (2017) Phosphate and potassium-solubilizing bacteria effect on the growth of rice. Ecol Eng 103(1):164–169

    Article  Google Scholar 

  • Barbagelata PA, Mallarino AP (2012) Field correlation of potassium soil test methods based on dried and field-moist soil samples for corn and soybean. Nutr Manage Soil Plant Anal 77:318–327

    Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial cooperation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64:269–285

    Article  Google Scholar 

  • Baus D (2017) Overpopulation and the impact on the environment. CUNY Academic Works. http://academicworks.cuny.edu/gc_etds/1906

  • Bearden BN, Petersen L (2000) Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol. Plant Soil 218:173–183

    Article  CAS  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc London Ser B 273:1715–1727

    Article  CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  • Boiffin J, Malezieux E, Picard D (2001) Cropping systems for the future. In: Nösberger J, Geiger HH, Struik PC (eds) Crop science: progress and prospects. CABI Publishing, New York, pp 261–279

    Google Scholar 

  • Broz AK, Broeckling CD, De-la-Peña C, Lewis MR, Greene E, Callaway RM, Sumner LW, Vivanco JM (2010) Plant neighbor identity influences plant biochemistry and physiology related to defense. BMC Plant Biol 10:115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brussaard CP (2004) Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol 70:1506–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellano MJ, Mueller KE, Olk DC, Sawyer JE, Six J (2015) Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob Change Biol 21:3200–3209

    Article  Google Scholar 

  • Chen G, Zhu H, Zhang Y (2003) Soil microbial activities and carbon and nitrogen fixation. Res Microbiol 154:393–398

    Article  CAS  PubMed  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM, Dekkers LC, Lugtenberg BJJ (2000) Root colonization by Phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant Microbe Interact 13:1340–1345

    Article  CAS  PubMed  Google Scholar 

  • Darnajoux R, Zhang X, McRose DL, Miadlikowska J, Lutzoni F, Kraepiel AM, Bellenger JP (2017) Biological nitrogen fixation by alternative nitrogenases in boreal cyanolichens: importance of molybdenum availability and implications for current biological nitrogen fixation estimates. New Phytol 213:680–689

    Article  CAS  PubMed  Google Scholar 

  • Dineshkumar R, Kumaravel R, Gopalsamy J, Sikder MNA, Sampathkumar P (2017) Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste Biomass Valoriz:1–8

    Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Dong Z, Layzell DB (2001) H2 oxidation, O2 uptake and CO2 fixation in hydrogen treated soils. Plant Soil 229:1–12

    Article  CAS  Google Scholar 

  • Doran JW (1980) Soil microbial and biochemical changes associated with reduced tillage. Soil Sci Soc Am J 44(4):765–771

    Article  CAS  Google Scholar 

  • Doran JW, Safley M (1997) Defining and assessing soil health and sustainable productivity. In: Pankhurst C, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wallingford, pp 1–28

    Google Scholar 

  • Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek 106:85–125

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    CAS  PubMed  Google Scholar 

  • Egamberdieva D, Reckling M, Wirth S (2017) Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress. Eur J Soil Biol 78:38–42

    Article  CAS  Google Scholar 

  • El-Azim A, WM K, Rania MR, Badawy MYM (2017) Effect of bio-fertilization and different licorice extracts on growth and productivity of Foeniculum vulgare. Mill Plant Middle East J 6:1–12

    Google Scholar 

  • Farwig N, Bailey D, Bochud E, Herrmann JD, Kindler E, Reusser N, Schüepp C, Schmidt-Entling MH (2009) Isolation from forest reduces pollination, seed predation and insect scavenging in Swiss farmland. Landsc Ecol 24:919–927

    Article  Google Scholar 

  • Felestrino EB, Santiago IF, Silva F Ld, Rosa LH, Ribeiro SP, Moreira LM (2017) Plant Growth promoting bacteria associated with Langsdorffia hypogaea-rhizosphere-host biological interface: a neglected model of bacterial prospection. Front Microbiol. https://doi.org/10.3389/fmicb.2017.001722

  • Fu L, Penton CR, Ruan Y, Shen Z, Xue C, Li R, Shen Q (2017) Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biol Biochem 104:39–48

    Article  CAS  Google Scholar 

  • Gallon JR, Chaplin AE (1987) An introduction to nitrogen fixation. Cassel Educational Limited, London

    Google Scholar 

  • Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169:13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Gontia-Mishra I, Sapre S, Sharma A, Tiwari S (2016) Alleviation of mercury toxicity in wheat by the interaction of mercury-tolerant plant growth-promoting rhizobacteria. J Plant Growth Regul 35:1000–1012

    Article  CAS  Google Scholar 

  • Gurr GM, Wratten SD, Luna JM (2003) Multi-function agricultural biodiversity: pest management and other benefits. Basic Appl Ecol 4:107–116

    Article  Google Scholar 

  • Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617

    Article  CAS  PubMed  Google Scholar 

  • Hadi A, Nur HS (2017) The use of biofertilizers increased plant growth with no tradeoff effect on greenhouse gas emissions. J Wetlands Environ Manag 5:18–23

    Article  Google Scholar 

  • Haldar S, Sengupta S (2015) Plant-microbe cross-talk in the rhizosphere: insight and biotechnological potential. Open Microbiol 9:1–7. https://doi.org/10.2174/1874285801509010001

    Article  CAS  Google Scholar 

  • Hamilton EW, Frank DA (2001) Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82:2397–2402

    Article  Google Scholar 

  • Hernandez G (2000) Biological nitrogen fixation and sustainable agriculture. In: Fina TM, O’Brian MR, Layzell DB, Vessey JK, Newton W (eds) Nitrogen fixation, global perspectives. CABI Publishing, New York, pp 339–340

    Google Scholar 

  • Høgh-Jensen H, Schjoerring JK (2001) Rhizodeposition of nitrogen by red clover, white clover and ryegrass. Soil Biol Biochem 33:439–448

    Article  Google Scholar 

  • Irvine P, Smith M, Dong Z (2003) Hydrogen fertilizer: bacteria or fungi? ISHS Acta Hortic 631:239–242

    Google Scholar 

  • Johnston AE, Poulton PR, Coleman K (2009) Soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes. Adv Agron 101:1–57

    Article  Google Scholar 

  • Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M, Cliff JB, Solaiman ZM, Murphy DV (2015) Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol 205:1537–1551

    Article  CAS  PubMed  Google Scholar 

  • Kaschuk G, Alberton O, Hungria M (2010) Three decades of soil microbial biomass studies in Brazilian ecosystems: lessons learned about soil quality and indications for improving sustainability. Soil Biol Biochem 42:1–13

    Article  CAS  Google Scholar 

  • Khan MY, Haque MM, Molla AH, Rahman MM, Alam MZ (2017) Antioxidant compounds and minerals in tomatoes by Trichoderma-enriched biofertilizer and their relationship with the soil environments. J Integr Agric 16:691–703

    Article  CAS  Google Scholar 

  • Kibblewhite MG, Ritz K, Swift MJ (2008) Soil health in agricultural systems. Philos Trans R Soc London Ser B 363:685–701. https://doi.org/10.1098/rstb.2007.2178

    Article  CAS  Google Scholar 

  • King RW, Evans LT (2003) Gibberellins and flowering of grasses and cereals: prizing open the lid of the “florigen” black box. Annu Rev Plant Biol 54:307–328

    Article  CAS  PubMed  Google Scholar 

  • Kohler J, Roldán A, Campoy M, Caravaca F (2016) Unraveling the role of hyphal networks from arbuscular mycorrhizal fungi in aggregate stabilization of semiarid soils with different textures and carbonate contents. Plant Soil:1–9

    Google Scholar 

  • Krithika S, Balachandar D (2016) Expression of zinc transporter genes in rice as influenced by zinc-solubilizing Enterobacter cloacae strain ZSB14. Front Plant Sci 7:446

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Dubey RC (2012) Plant Growth Promoting Rhizobacteria for biocontrol of phytopathogens and yield enhancement of Phaseolus vulgaris. J Curr Perspect App Microbiol 1:6–38

    Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under Indo-gangetic plain of India. J Plant Growth Regul:1–10

    Google Scholar 

  • Lagopodi AL, Ram AFJ, Lamers GEM, Punt JP, Van den Hondel CAMJJ, Lugtenberg BJJ, Bloemberg GV (2002) Novel aspects of tomato root colonization and infection by Fusarium oxysporum F. sp. radicislycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Mol Plant-Microbe Interact 15:172–179

    Article  CAS  PubMed  Google Scholar 

  • Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587. https://doi.org/10.1007/s11103-015:0417-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Roux X, Barbault R, Baudry J, Burel F, Doussan I, Garnier E, Herzog F, Lavorel S, Lifran R, Roger-Estrade J, Sarthou JP, Trommetter M (2008) Agriculture et biodiversité-Valoriser les synergies. Expertise scientifique collective, INRA, France

    Google Scholar 

  • Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation a meta-analysis. Plant Soil 374:523–537

    Article  CAS  Google Scholar 

  • Li M, Ahammed GJ, Li C, Bao X, Yu J, Huang C, Yin H, Zhou J (2016) Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Front Plant Sci 7:615

    PubMed  PubMed Central  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paeni bacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29(5):413–421

    Article  CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  PubMed  Google Scholar 

  • M’piga PM, Bélanger RR, Paulitz TC, Benhamou N (1997) Increased resistance to Fusarium oxysporum f. sp. radicislycopersici in tomato plants treated with the endophytic bacterium Pseudomonas fluorescens strain 63-28. Physiol Mol Plant Pathol 50:301–320

    Article  Google Scholar 

  • Mahajan MS, Tan MW, Rahme LG, Ausubel FM (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa Caenorhabditis elegans pathogenesis model. Cell 96:47–56

    Article  Google Scholar 

  • Mathesius U (2003) Conservation and divergence of signaling pathways between roots and soil microbes-the Rhizobium-legume symbiosis compared to the development of lateral roots, mycorrhizal interactions and nematode induced galls. Plant Soil 255:105–119

    Article  CAS  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol 4:806–811

    Article  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB (2017a) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Meena VS, Mishra PK, Bisht JK, Pattanayak A (2017b) Agriculturally important microbes for sustainable agriculture, Vol. 2: Applications in crop production and protection. Springer, Singapore. https://doi.org/10.1007/978-981-10-5343-6

    Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 3–18

    Chapter  Google Scholar 

  • Mishra I, Sapre S, Kachare SA, Tiwari S (2017) Molecular diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing PGPR from wheat (Triticum aestivum L.) rhizosphere. Plant Soil 414:213–227

    Article  CAS  Google Scholar 

  • Mohamadi P, Razmjou J, Naseri B, Hassanpour M (2017) Population growth parameters of Tutaabsoluta (Lepidoptera: Gelechiidae) on tomato plant using organic substrate and biofertilizers. J Insect Sci (Online) 17:36

    Article  CAS  Google Scholar 

  • Moonen AC, Bàrberi P (2008) Functional biodiversity: an agroecosystem approach. Agric Ecosyst Environ 127:7–21

    Article  Google Scholar 

  • Mukhongo RW, Tumuhairwe JB, Ebanyat P, AbdelGadir AH, Thuita M, Masso C (2017) Combined application of biofertilizers and inorganic nutrients improves sweet potato yields. Front Plant Sci 8

    Google Scholar 

  • Nath D, Maurya BR, Meena VS (2017) Documentation of five potassium and phosphorus solubilizing bacteria for their K and P-solubilization ability from various minerals. Biocatal Agric Biotechnol 10:174–181

    Article  Google Scholar 

  • Nguyen TH, Phan TC, Choudhury AT, Rose MT, Deaker RJ, Kennedy IR (2017) BioGro: A plant growth-promoting biofertilizer validated by 15 years’ research from laboratory selection to rice farmer’s fields of the Mekong Delta. In: Agro- environmental sustainability. Springer, pp 237–254

    Google Scholar 

  • Oliveira WS, Coelho IL, Oliveira JRS, Leite MCBS, Arnaud TMS, Stamford NP, Silva EVN, da Silva VSG, de Oliveira MW, de Oliveira DC, Oliveira TBA (2017) Biological control of the bacterial wilt Ralstonia solanacearum by bioprotector with fungi chitosan from Cunninghamella elegans on tomatoes. Afr J Agric Res 12:42–49

    Article  CAS  Google Scholar 

  • Ortíz-Castro R, Valencia-Cantero E, López-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signalling. Plant Signal Behav 3:263–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    Article  PubMed  PubMed Central  Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3:25–31

    Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Patra MK, Dash BK, Mahalik JK (2017) Effect of bio-fertilizers with graded doses of NPK on Tomato (cv. Pusa ruby) infected by Meloidogyne incognita. Ann Plant Prot Sci 25:190–194

    Google Scholar 

  • Pellegrino E, Bedini S (2014) Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol Biochem 68:429–443

    Article  CAS  Google Scholar 

  • Pérez-Montaño F, Alías-Villegas C, Bellogín RA, del Cerro P, Espuny MR, Jiménez-Guerrero I, López-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    Article  PubMed  Google Scholar 

  • Peterson CA, Emanuel ME, Humphreys GB (1981) Pathway of movement of apoplastic fluorescent dye tracers through the endodermis at the site of secondary root formation in corn (Zea mays) and broad bean (Vicia faba). Can J Bot 59:618–625

    Article  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van WSC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 327–331. https://doi.org/10.1007/978-81-322-2776-2

    Chapter  Google Scholar 

  • Querne A, Battie-laclau P, Dufour L, Wery J, Dupraz C (2017) Effects of walnut trees on biological nitrogen fixation and yield of intercropped alfalfa in a Mediterranean agroforestry system. Eur J Agron 84:35–46

    Article  CAS  Google Scholar 

  • Radja CR, Nandakumar R, Kandan A, Suresh S, Bharathi M, Raguchander T, Samiyappan R (2002) Pseudomonas fluorescens based bio-formulation for the management of sheath blight disease and leaf folder insect in rice. Crop Prot 21:671–677

    Article  Google Scholar 

  • Rillig M, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Aguilar-Trigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, Lehmann A (2015) Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol 205:1385–1388

    Article  CAS  PubMed  Google Scholar 

  • Sabbagh SK, Poorabdollah A, Sirousmehr A, Gholamalizadeh-Ahangar A (2017) Biofertilizers and systemic acquired resistance in Fusarium infected wheat. J Agric Sci Technol 19:453–464

    Google Scholar 

  • Santoyo G, Orozco-Mosqueda MD, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Technol 22(8):855–872

    Article  Google Scholar 

  • Sarathambal C, Thangaraju M, Paulraj C, Gomathy M (2010) Assessing the zinc solubilization ability of Gluconacetobacter diazotrophicus in maize rhizosphere using labelled 65Zn compounds. Indian J Microbiol 50:103–S109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setiawati TC, Mutmainnah L (2016) Solubilization of potassium containing mineral by microorganisms from sugarcane rhizosphere. Agric Sci Procedia 9:108–117

    Google Scholar 

  • Shahbaz M, Kuzyakov Y, Sanaullah M, Heitkamp F, Zelenev V, Kumar A, Blagodatskaya E (2017) Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: mechanisms and thresholds. Biol Fertil Soils 1:15

    Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Simarmata T, Turmuktini T, Fitriatin BN, Setiawati MR (2016) Application of bioameliorant and biofertilizers to increase the soil health and rice productivity. HAYATI J Biosci 23:181–184

    Article  Google Scholar 

  • Singh DP, Prabha R, Yandigeri MS, Arora DK (2011) Cyanobacteria-mediated phenylpropanoids and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance. Antonie Van Leeuwenhoek 100:557–568

    Article  CAS  PubMed  Google Scholar 

  • Singh DP, Singh HB, Prabha R (eds) (2016) Microbial inoculants in sustainable agricultural productivity. Vol. 1: Research perspectives. Springer, p 343

    Google Scholar 

  • Sprent JI (2001) Nodulation in Legumes. Royal Botanic Gardens, Kew, UK. Staples, R. C. 2003. A novel gene for rust resistance. Trends Plant Sci 8:149–151

    Article  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  CAS  PubMed  Google Scholar 

  • Stoate C, Boatman ND, Borralho RJ, Carvalho CR, de Snoo GR, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manag 63:337–365

    Article  CAS  Google Scholar 

  • Stone JM, Heard JE, Asai T, Ausubel FM (2000) Simulation of fungal-mediated cell death by fumonisin B1 and selection of fumonisin B1–resistant (fbr) Arabidopsis mutants. Plant Cell 12(10):1811–1822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  PubMed  Google Scholar 

  • Sturz AV, Christie BR (1996) Endophytic bacteria of red clover as agents of allelopathic clover-maize syndromes. Soil Biol Biochem 28:583–588

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG (1998) Associations of bacterial endophyte populations from red clover and potato crops with potential for beneficial allelopathy. Can J Microbiol 44:162–167

    Article  CAS  Google Scholar 

  • Sturz AV, Arsenault W, Christie BR (2003) Red clover–potato cultivar combinations for improved potato yield. Agron J 95(5):1089–1092

    Article  Google Scholar 

  • Taktek S, St-Arnaud M, Piché Y, Fortin JA, Antoun H (2017) Igneous phosphate rock solubilization by biofilm-forming mycorrhizobacteria and hyphobacteria associated with Rhizoglomus irregulare DAOM 197198. Mycorrhiza 27:13–22

    Article  CAS  PubMed  Google Scholar 

  • Tamasloukht M, Séjalon-Delmas N, Kluever A, Jauneau A, Roux C, Bécard G, Franken P (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol 131:1468–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripti KA, Usmani Z, Kumar V (2017) Biochar and flyash inoculated with plant growth promoting rhizobacteria act as potential biofertilizer for luxuriant growth and yield of tomato plant. J Environ Manag 190:20–27

    Article  CAS  Google Scholar 

  • Trivedi P, Delgado-Baquerizo M, Anderson IC, Singh BK (2016) Response of soil properties and microbial communities to agriculture: implications for primary productivity and soil health indicators. Front Plant Sci 7:990

    PubMed  PubMed Central  Google Scholar 

  • Uratsu SL, Keyser HH, Weber DF, Lim ST (1982) Hydrogen uptake (HUP) activity of Rhizobium japonicum from major U.S. soybean production areas. Crop Sci 22:600–602

    Article  Google Scholar 

  • van der Wal A, de Boer W (2017) Dinner in the dark: illuminating drivers of soil organic matter decomposition. Soil Biol Biochem 105:45–48

    Article  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Van Wees SCM, Swart de EAM, van Pelt JA, van Loon LC, Pieterse CMJ (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci 97:8711–8716

    Article  PubMed  PubMed Central  Google Scholar 

  • Velazquez E, Silva LR, Ramírez-Bahena MH, Peix (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 99–110. https://doi.org/10.1007/978-81-322-2776-2

    Chapter  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Jaiswal DK (2014) Evaluation of plant growth promoting activities of microbial strains and their effect on growth and yield of chickpea (Cicer arietinum L.) in India. Soil Biol Biochem 70:33–37

    Article  CAS  Google Scholar 

  • Verma R, Maurya BR, Meena VS, Dotaniya ML, Deewan P, Jajoria M (2017) Enhancing production potential of cabbage and improves soil fertility status of Indo-Gangetic Plain through application of bio-organics and mineral fertilizer. Int J Curr Microbiol Appl Sci 6(3):301–309

    CAS  Google Scholar 

  • Wallenstein MD, Weintraub MN (2008) Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes. Soil Biol Biochem 40:2098–2106

    Article  CAS  Google Scholar 

  • Wang C, Knill E, Glick BR, Défago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHAO and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907

    Article  CAS  PubMed  Google Scholar 

  • Wang YP, Law RM, Pak B (2010) A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Bio Geosciences 7:2261–2282

    CAS  Google Scholar 

  • Warner KD (2007) The quality of sustainability: agroecological partnerships and the geographic branding of California winegrapes. J Rural Stud 23:142–155

    Article  Google Scholar 

  • World Bank (2008) World development report: agriculture for development. Washington DC

    Google Scholar 

  • Yadav SK, Dave A, Sarkar A, Singh HB, Sarma BK (2013) Co-inoculated biopriming with Trichoderma, Pseudomonas and Rhizobium improves crop growth in Cicer arietinum and Phaseolus vulgaris. Int J Agric Environ Biotechnol 6:255–259

    Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz E, Sonmez M (2017) The role of organic/biofertilizer amendment on aggregate stability and organic carbon content in different aggregate scales. Soil Tillage Res 168:118–124

    Article  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact 21:737–744

    Article  PubMed  CAS  Google Scholar 

  • Zwanenburg B, Pospíšil T (2013) Structure and activity of strigolactones: new plant hormones with a rich future. Mol Plant 6:38–62

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qasim Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, Q., Ashraf, S., Kamran, M., Ijaz, M. (2019). Affirmative Plant-Microbe Interfaces Toward Agroecosystem Sustainability. In: Kumar, V., Prasad, R., Kumar, M., Choudhary, D. (eds) Microbiome in Plant Health and Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-8495-0_7

Download citation

Publish with us

Policies and ethics