Skip to main content

What’s the Future of Glaucoma Diagnosis and Neuroprotection

  • Chapter
  • First Online:
Glaucoma

Part of the book series: Current Practices in Ophthalmology ((CUPROP))

  • 944 Accesses

Abstract

From the use of advanced computer-based imaging technology, tablet-based perimeters, novel biomarkers to genetic markers, glaucoma diagnostics is currently one of the most exciting areas to work in. This chapter gives an insight at the future of glaucoma diagnosis and how cutting-edge research is improving accuracy in detecting glaucomatous change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fallon M, Valero O, Pazos M, Anton A. Diagnostic accuracy of imaging devices in glaucoma: a meta-analysis. Surv Ophthalmol. 2017;62(4):446–61.

    Article  Google Scholar 

  2. Kansal V, Armstrong JJ, Pintwala R, Hutnik C. Optical coherence tomography for glaucoma diagnosis: an evidence based meta-analysis. PLoS One. 2018;13(1):e0190621.

    Article  Google Scholar 

  3. Della Santina L, Ou Y. Who’s lost first? Susceptibility of retinal ganglion cell types in experimental glaucoma. Exp Eye Res. 2017;158:43–50.

    Article  CAS  Google Scholar 

  4. Chen X, Hou P, Jin C, et al. Quantitative analysis of retinal layer optical intensities on three-dimensional optical coherence tomographyquantitative analysis of OCT optical intensity. Invest Ophthalmol Vis Sci. 2013;54(10):6846–51.

    Article  Google Scholar 

  5. Belghith A, Bowd C, Weinreb RN, Zangwill LM. A hierarchical framework for estimating neuroretinal rim area using 3D spectral domain optical coherence tomography (SD-OCT) optic nerve head (ONH) images of healthy and glaucoma eyes. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:3869–72.

    PubMed  Google Scholar 

  6. Belghith A, Bowd C, Medeiros FA, et al. Does the location of Bruch’s membrane opening change over time? Longitudinal analysis using San Diego automated layer segmentation algorithm (SALSA). Invest Ophthalmol Vis Sci. 2016;57(2):675–82.

    Article  Google Scholar 

  7. Manalastas PIC, Belghith A, Weinreb RN, et al. Automated beta zone parapapillary area measurement to differentiate between healthy and glaucoma eyes. Am J Ophthalmol. 2018;191:140.

    Article  Google Scholar 

  8. Mwanza JC, Warren JL, Budenz DL. Utility of combining spectral domain optical coherence tomography structural parameters for the diagnosis of early Glaucoma: a mini-review. Eye Vis (Lond). 2018;5:9.

    Article  Google Scholar 

  9. Van Melkebeke L, Barbosa-Breda J, Huygens M, Stalmans I. Optical coherence tomography angiography in glaucoma: a review. Ophthalmic Res. 2018;60:139–51.

    Article  Google Scholar 

  10. Liu L, Jia Y, Takusagawa HL, et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015;133(9):1045–52.

    Article  Google Scholar 

  11. Kurysheva NI, Maslova EV. Optical coherence tomography angiography in glaucoma diagnosis. Vestn Oftalmol. 2016;132(5):98–102.

    Article  CAS  Google Scholar 

  12. Cvenkel B, Sustar M, Perovsek D. Ganglion cell loss in early glaucoma, as assessed by photopic negative response, pattern electroretinogram, and spectral-domain optical coherence tomography. Doc Ophthalmol. 2017;135(1):17–28.

    Article  Google Scholar 

  13. Tai TYT. Visual evoked potentials and glaucoma. Asia Pac J Ophthalmol (Phila). 2018;7:352.

    Google Scholar 

  14. Chen X-W, Zhao Y-X. Comparison of isolated-check visual evoked potential and standard automated perimetry in early glaucoma and high-risk ocular hypertension. Int J Ophthalmol. 2017;10(4):599–604.

    PubMed  PubMed Central  Google Scholar 

  15. Johnson CA, Thapa S, George Kong YX, Robin AL. Performance of an iPad application to detect moderate and advanced visual field loss in Nepal. Am J Ophthalmol. 2017;182:147.

    Article  Google Scholar 

  16. Tsapakis S, Papaconstantinou D, Diagourtas A, et al. Visual field examination method using virtual reality glasses compared with the Humphrey perimeter. Clin Ophthalmol. 2017;11:1431–43.

    Article  Google Scholar 

  17. Satgunam P, Datta S, Chillakala K, Bobbili KR, Joshi D. Pediatric perimeter-a novel device to measure visual fields in infants and patients with special needs. Transl Vis Sci Technol. 2017;6(4):3.

    Article  Google Scholar 

  18. Kassam F, Yogesan K, Sogbesan E, Pasquale LR, Damji KF. Teleglaucoma: improving access and efficiency for glaucoma care. M E Afr J Ophthalmol. 2013;20(2):142–9.

    Article  Google Scholar 

  19. Von Thun Und Hohenstein-Blaul N, Kunst S, Pfeiffer N, Grus FH. Biomarkers for glaucoma: from the lab to the clinic. Eye (Lond). 2017;31(2):225–31.

    Article  Google Scholar 

  20. Boehm N, Wolters D, Thiel U, et al. New insights into autoantibody profiles from immune privileged sites in the eye: a glaucoma study. Brain Behav Immun. 2012;26(1):96–102.

    Article  CAS  Google Scholar 

  21. Benoist d’Azy C, Pereira B, Chiambaretta F, Dutheil F. Oxidative and anti-oxidative stress markers in chronic glaucoma: a systematic review and meta-analysis. PLoS One. 2016;11(12):e0166915.

    Article  Google Scholar 

  22. Gong G, Kosoko-Lasaki S, Haynatzki G, et al. Inherited, familial and sporadic primary open-angle glaucoma. J Natl Med Assoc. 2007;99(5):559–63.

    PubMed  PubMed Central  Google Scholar 

  23. Bettin P, Di Matteo F. Glaucoma: present challenges and future trends. Ophthalmic Res. 2013;50(4):197–208.

    Article  CAS  Google Scholar 

  24. Fan BJ, Wang DY, Fan DS, et al. SNPs and interaction analyses of myocilin, optineurin, and apolipoprotein E in primary open angle glaucoma patients. Mol Vis. 2005;11:625–31.

    CAS  PubMed  Google Scholar 

  25. Dong Z, Khor CC, Wiggs JL. Genome-Wide Association studies of glaucoma. In: Prakash G, Iwata T, editors. Advances in vision research, volume I: genetic eye research in Asia and the Pacific. Tokyo: Springer Japan; 2017. p. 275–90.

    Chapter  Google Scholar 

  26. Khawaja AP, Viswanathan AC. Are we ready for genetic testing for primary open-angle glaucoma? Eye. 2018;32(5):877–83.

    Article  Google Scholar 

  27. Souzeau E, Burdon KP, Dubowsky A, et al. Higher prevalence of myocilin mutations in advanced glaucoma in comparison with less advanced disease in an Australasian disease registry. Ophthalmology. 2013;120(6):1135–43.

    Article  Google Scholar 

  28. Danesh-Meyer HV. Neuroprotection in glaucoma: recent and future directions. Curr Opin Ophthalmol. 2011;22(2):78–86.

    Article  Google Scholar 

  29. Sigireddi RR, Frankfort BJ. Neuroprotection in glaucoma. Int Ophthalmol Clin. 2018;58(3):51–67.

    Article  Google Scholar 

  30. WoldeMussie E, Yoles E, Schwartz M, Ruiz G, Wheeler LA. Neuroprotective effect of memantine in different retinal injury models in rats. J Glaucoma. 2002;11(6):474–80.

    Article  Google Scholar 

  31. Hare WA, WoldeMussie E, Lai RK, et al. Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, I: functional measures. Invest Ophthalmol Vis Sci. 2004;45(8):2625–39.

    Article  Google Scholar 

  32. Dong CJ, Guo Y, Agey P, Wheeler L, Hare WA. Alpha2 adrenergic modulation of NMDA receptor function as a major mechanism of RGC protection in experimental glaucoma and retinal excitotoxicity. Invest Ophthalmol Vis Sci. 2008;49(10):4515–22.

    Article  Google Scholar 

  33. Krupin T, Liebmann JM, Greenfield DS, Ritch R, Gardiner S. A randomized trial of brimonidine versus timolol in preserving visual function: results from the low-pressure glaucoma treatment study. Am J Ophthalmol. 2011;151(4):671–81.

    Article  CAS  Google Scholar 

  34. Sena DF, Lindsley K. Neuroprotection for treatment of glaucoma in adults. Cochrane Database Syst Rev. 2017;(1):CD006539.

    Google Scholar 

  35. Sun Y, Williams A, Waisbourd M, Iacovitti L, Katz LJ. Stem cell therapy for glaucoma: science or snake oil? Surv Ophthalmol. 2015;60(2):93–105.

    Article  Google Scholar 

  36. Manuguerra-Gagne R, Boulos PR, Ammar A, et al. Transplantation of mesenchymal stem cells promotes tissue regeneration in a glaucoma model through laser-induced paracrine factor secretion and progenitor cell recruitment. Stem Cells. 2013;31(6):1136–48.

    Article  CAS  Google Scholar 

  37. Cho GY, Justus S, Sengillo JD, Tsang SH. CRISPR in the retina: evaluation of future potential. Adv Exp Med Biol. 2017;1016:147–55.

    Article  CAS  Google Scholar 

  38. Fry LE, Fahy E, Chrysostomou V, et al. The coma in glaucoma: retinal ganglion cell dysfunction and recovery. Prog Retin Eye Res. 2018;65:77.

    Article  Google Scholar 

  39. Lawlor M, Danesh-Meyer H, Levin LA, et al. Glaucoma and the brain: trans-synaptic degeneration, structural change, and implications for neuroprotection. Surv Ophthalmol. 2018;63(3):296–306.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thakur, S. (2019). What’s the Future of Glaucoma Diagnosis and Neuroprotection. In: Ichhpujani, P. (eds) Glaucoma. Current Practices in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-13-8457-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8457-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8456-1

  • Online ISBN: 978-981-13-8457-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics