Skip to main content

Oxidative Stress in Neonatal Lung Diseases

  • Chapter
  • First Online:
Oxidative Stress in Lung Diseases

Abstract

Neonates experience abrupt surge in oxygen (O2) tension immediately after birth when their antioxidant defense system is not yet fully established. The more than fivefold increase in O2 tension causes immediate oxidative stress, and the change can be more exaggerated when neonates are born with respiratory distress that requires supplemental O2 to maintain tissue metabolism. This perinatal transition-induced oxidative stress is apparently very different from those experienced by other age groups. There are more than 1 in every 100 neonates who suffer from respiratory distress at birth. When mechanical ventilation is used for respiratory distress, which sometimes can be complicated with infection secondary to the invasive treatments, more oxidative stress will be generated. Mechanical ventilation, oxygen use, and infection are the three major contributors to neonatal chronic lung disease (CLD) – bronchopulmonary dysplasia – and all of them are associated with the generation of reactive oxidants. Persistent pulmonary hypertension of the newborn (PPHN) which occurs 1 in every 500 live births is another common neonatal lung disease mainly due to the persistence of high pulmonary vascular resistance. Increased endogenous oxidative stress has been shown to play a mechanistic role in the decreased vasodilation in PPHN. Inhaled nitric oxide and high concentration oxygen are used to reduce the pulmonary vascular resistance in PPHN. Since the lung is the first organ to confront this dramatic perinatal change, the cells within the lung need to cope with the oxidative stress. Cells respond to the oxidative stress with unfolded protein response, autophagy, and other adaptive mechanisms to survive this challenge by sacrificing their normal functions. When the oxidative stress persists too long, or is too overwhelming, then cell growth will be impaired with the development of chronic lung disease as a complication. The first 2–6 years of life is the most important period for lung growth, so any injury during this critical period can have major long-term impact to adult lung function. Neonates who survive chronic lung disease usually need months or even years of O2 support; this obviously will further prolong the oxidative stress of their lungs. Pulmonary hypertension can complicate the CLD which significantly increases the mortality rate. The CLD survivors are also prone to develop chronic obstructive pulmonary disease which is the major leading cause of death worldwide. Although oxidative stress plays a vital role in causing lung injury, the antioxidant treatment, however, has never shown clinical efficacy indicating that more complicated mechanisms are involved. Roughly 20,000 neonates suffer from chronic lung diseases each year in the USA. New therapeutic strategies are apparently in need to help these neonates with a better lung growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9:400–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abman SH (2001) Bronchopulmonary dysplasia: “a vascular hypothesis”. Am J Respir Crit Care Med 164:1755–1756

    Article  CAS  PubMed  Google Scholar 

  • Afolayan AJ, Eis A, Teng RJ, Bakhutashvili I, Kaul S, Davis JM, Konduri GG (2012) Decreases in manganese superoxide dismutase expression and activity contribute to oxidative stress in persistent pulmonary hypertension of the newborn. Am J Physiol Lung Cell Mol Physiol 303:L870–L879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afolayan AJ, Teng RJ, Eis A et al (2014) Inducible HSP70 regulates superoxide dismutase-2 and mitochondrial oxidative stress in the endothelial cells from developing lungs. Am J Physiol Lung Cell Mol Physiol 306:L351–L360

    Article  CAS  PubMed  Google Scholar 

  • Afolayan A, Eis A, Michalkiewicz T, Teng R-J, Lakshminrusimha S, Konduri GG (2016) Decreased endothelial NOS expression and function contributes to impaired mitochondrial biogenesis and oxidative stress in fetal lambs with PPHN. Am J Physiol Lung Cell Mol Physiol 310:L40–L49

    Article  PubMed  Google Scholar 

  • Aghai ZH, Saslow JG, Meniru C et al (2010) High-mobility group box-1 protein in tracheal aspirates from premature infants: relationship with bronchopulmonary dysplasia and steroid therapy. J Perinatol 30:610–615

    Article  CAS  PubMed  Google Scholar 

  • Alano MA, Ngougmna E, Ostrea EM Jr, Konduri GG (2001) Analysis of nonsteroidal antiinflammatory drugs in meconium and its relation to persistent pulmonary hypertension of the newborn. Pediatrics 107:519–523

    Article  CAS  PubMed  Google Scholar 

  • Almario B, Wu S, Peng J, Alapati D, Chen S (2012) Pentoxifylline and prevention of hyperoxia-induced lung injury in neonatal rats. Pediatr Res 71:583–589

    Article  CAS  PubMed  Google Scholar 

  • Ames BN, Cathcart R, Schwiers E, Hochstein P (1981) Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A 78:6858–6862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An H, Nishimaki S, Ohyama M et al (2004) Interleukin-6, interleukin-8, and soluble tumor necrosis factor receptor-I in the cord blood as predictors of chronic lung disease in premature infants. Am J Obstet Gynecol 191:1649–1654

    Article  CAS  PubMed  Google Scholar 

  • Andersson U, Tracey KJ (2011) HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol 29:139–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apak R, Gorinstein S, Böhm V, Schaich KM, Özyürek M, Güçlü K (2013) Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure Appl Chem 85:957–998

    Article  CAS  Google Scholar 

  • Auten RL, Mason SN, Tanaka DT, Welty-Wolf K, Whorton MH (2001) Anti-neutrophil chemokine preserves alveolar development in hyperoxia-exposed newborn rats. Am J Physiol Lung Cell Mol Physiol 281:L336–L344

    Article  CAS  PubMed  Google Scholar 

  • Baraldi E, Filippone M (2007) Chronic lung disease after premature birth. N Engl J Med 357:1946–1955

    Article  CAS  PubMed  Google Scholar 

  • Berkelhamer SK, Farrow KN (2014) Developmental regulation of antioxidant enzymes and their impact on neonatal lung disease. Antioxid Redox Signal 21:1837–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berkelhamer SK, Mestan KK, Steinhorn RH (2013) Pulmonary hypertension in bronchopulmonary dysplasia. Semin Perinatol 37:124–131

    Article  PubMed  PubMed Central  Google Scholar 

  • Berti A, Janes A, Furlan R, Macagno F (2010) High prevalence of minor neurologic deficits in a long-term neurodevelopmental follow-up of children with severe persistent pulmonary hypertension of the newborn: a cohort study. Ital J Pediatr 36:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhandari A, Carroll C, Bhandari V (2016) BPD following preterm birth: a model for chronic lung disease and a substrate for ARDS in childhood. Front Pediatr 4:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourbon J, Boucherat O, Chailley-Heu B, Delacourt C (2005) Control mechanisms of lung alveolar development and their disorders in bronchopulmonary dysplasia. Pediatr Res 57:38R–46R

    Article  PubMed  Google Scholar 

  • Brennan LA, Steinhorn RH, Wedgwood S, Meta-Greenwood E, Roark EA, Russell JA, Black SM (2003) Increased superoxide generation is associated with pulmonary hypertension in fetal lambs: a role for NADPH oxidase. Circ Res 92:683–691

    Article  CAS  PubMed  Google Scholar 

  • Britt RD Jr, Velten M, Tipple TE, Nelin LD, Rogers LK (2013) Cyclooxygenase-2 in newborn hyperoxic lung injury. Free Radic Biol Med 61:502–511

    Article  CAS  PubMed  Google Scholar 

  • Brown GC (2001) Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta 1504:46–57

    Article  CAS  PubMed  Google Scholar 

  • Brueckl C, Kaestle S, Kerem A, Habazettl H, Krombach F, Kuppe H, Kuebler WM (2006) Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ. Am J Resp Cell Mol Biol 34:453–463

    Article  CAS  Google Scholar 

  • Buhimschi IA, Buhimschi CS, Pupkin M, Weiner CP (2003) Beneficial impact of term labor: nonenzymatic antioxidant reserve in the human fetus. Am J Obstet Gynecol 189:181–188

    Article  PubMed  Google Scholar 

  • Buss IH, Senthilmohan R, Darlow BA, Mogridge N, Kettle AJ, Winterbourn CC (2003) 3-Chlorotyrosine as a marker of protein damage by myeloperoxidase in tracheal aspirates from preterm infants: association with adverse respiratory outcome. Pediatr Res 53:455–462

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Bachmann KA, Bailer AJ et al (2007) Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol Appl Pharmacol 222:122–128

    Article  CAS  PubMed  Google Scholar 

  • Cao SS, Kaufman RJ (2014) Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 21:396–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekar I, Eis A, Konduri GG (2008) Betamethasone attenuates oxidant stress in endothelial cells from fetal lambs with persistent pulmonary hypertension. Pediatr Res 63:67–72

    Article  CAS  PubMed  Google Scholar 

  • Chao C-M, van den Bruck R, Lork S et al (2018) Neonatal exposure to hyperoxia leads to persistent disturbances in pulmonary histone signatures associated with NOS3 and STAT3 in a mouse model. Clin Epigenetics 10:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chapman KE, Sinclair SE, Zhuang D, Hassid A, Desai LP, Waters CM (2005) Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells. Am J Physiol Lung Cell Mol Physiol 289:L834–L841

    Article  CAS  PubMed  Google Scholar 

  • Check J, Gotteiner N, Liu X, Su E, Porta N, Steinhorn R, Mestan KK (2013) Fetal growth restriction and pulmonary hypertension in premature infants with bronchopulmonary dysplasia. J Perinatol 33:553–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278:36027–36031

    Article  CAS  PubMed  Google Scholar 

  • Chesney RW, Helms RA, Christensen M, Budreau AM, Han X, Sturman JA (1998) The role of taurine in infant nutrition. In: Schaffer S, Lombardini JB, Huxtable RJ (eds) Taurine 3. Advances in experimental medicine and biology, vol 442. Springer, Boston

    Google Scholar 

  • Choo-Wing R, Syed MA, Harijith A, Bowen B, Pryhuber G, Janér C, Andersson S, Homer RJ, Bhandari V (2013) Hyperoxia and interferon-γ–induced injury in developing lungs occur via cyclooxygenase-2 and the endoplasmic reticulum stress–dependent pathway. Am J Respir Cell Mol Biol 48:749–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christou H, Adatia I, Van Marter LJ et al (1997) Effect of inhaled nitric oxide on endothelin-1 and cyclic guanosine 5′-monophosphate plasma concentrations in newborn infants with persistent pulmonary hypertension. J Pediatr 130:603–611

    Article  CAS  PubMed  Google Scholar 

  • Clerc P, Rigoulet M, Leverve X, Fontaine E (2007) Nitric oxide increases oxidative phosphorylation efficiency. J Bioenerg Biomembr 39:158–166

    Article  CAS  PubMed  Google Scholar 

  • Cohen SS, Powers BR, Lerch-Gaggl A, Teng RJ, Konduri GG (2014) Impaired cerebral angiogenesis in the fetal lamb model of persistent pulmonary hypertension. Int J Dev Neurosci 38:113–118

    Article  CAS  PubMed  Google Scholar 

  • Crabtree MJ, Smith CL, Lam G, Goligorsky MS, Gross SS (2008) Ratio of 5,6,7,8-tetrahydrobiopterin to 7,8-dihydrobiopterin in endothelial cells determines glucose-elicited changes in NO vs. superoxide production by eNOS. Am J Physiol Heart Circ Physiol 294:H1530–H1540

    Article  CAS  PubMed  Google Scholar 

  • Cunningham C, Tipton KF, Dixon HBF (1998) Conversion of taurine into N-chlorotaurine (taurine chloramine) and sulphoacetaldehyde in response to oxidative stress. J Biochem 330:939–945

    Article  CAS  Google Scholar 

  • D’Angio CT, Ambalavanan N, Carlo WA et al (2016) Blood cytokine profiles associated with distinct patterns of bronchopulmonary dysplasia among extremely low birth weight infants. J Pediatr 174:45–51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Datta A, Kim GA, Taylor JM, Gugino SF, Farrow KN, Schumacker PT, Berkelhamer SK (2015) Mouse lung development and NOX1 induction during hyperoxia are developmentally regulated and mitochondrial ROS dependent. A J Physiol Lung Cell Mol Physiol 309:L369–L377

    Article  CAS  Google Scholar 

  • Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM (2016) Pharmacol Rev 68:357–418

    Article  PubMed  PubMed Central  Google Scholar 

  • Davidge ST, Baker PN, Laughlin MK, Roberts JM (1995) Nitric oxide produced by endothelial cells increases production of eicosanoids through activation of prostaglandin H synthase. Circ Res 77:274–283

    Article  CAS  PubMed  Google Scholar 

  • Davis JM, Auten RL (2010) Maturation of the antioxidant system and the effects on preterm birth. Semin Fetal Neonatal Med 15:191–195

    Article  PubMed  Google Scholar 

  • Dayanim S, Lopez B, Maisonet TM, Grewal S, Londhe VA (2014) Caffeine induces alveolar apoptosis in the hyperoxia-exposed developing mouse lung. Pediatr Res 75:395–402

    Article  CAS  PubMed  Google Scholar 

  • Deng H, Mason SN, and Auten RL, Jr. Lung inflammation in hyperoxia can be prevented by antichemokine treatment in newborn rats. Am J Respir Crit Care Med 2000; 162:2316–2323

    Article  CAS  PubMed  Google Scholar 

  • Di Luozzo G, Bhargava J, Powell RJ (2000) Vascular smooth muscle cell effect on endothelial cell endothelin-1 production. J Vasc Surg 31:781–789

    Article  PubMed  Google Scholar 

  • Dikalov S (2011) Cross talk between mitochondria and NADPH oxidases. Free Radic Biol Med 51:1289–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobson NR, Hunt CE (2013) Pharmacology review: caffeine use in neonates: indications, pharmacokinetics, clinical effects, outcomes. NeoReviews 14:e540–e550

    Article  Google Scholar 

  • Durante W, Johnson FK, Johnson RA (2007) Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clin Exp Pharmacol Physiol 34:906–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eber E, Zach MS (2001) Long term sequelae of bronchopulmonary dysplasia (chronic lung disease of infancy). Thorax 56:317–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eiserich JP, Estévez AG, Bamberg TV et al (1999) Microtubule dysfunction by posttranslational nitrotyrosination of α-tubulin: a nitric oxide-dependent mechanism of cellular injury. PNAS 96:6365–6370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldredge LC, Treuting PM, Manicone AM, Ziegler SF, Parks WC, McGuire JK (2016) CD11b(+) mononuclear cells mitigate hyperoxia-induced lung injury in neonatal mice. Am J Respir Cell Mol Biol 54:273–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo A, Ayusawa M, Minato M, Takada M, Takahashi S, Harada K (2001) Endogenous nitric oxide and endothelin-1 in persistent pulmonary hypertension of the newborn. Eur J Pediatr 160:217–222

    Article  CAS  PubMed  Google Scholar 

  • Entezari M, Javdan M, Antoine DJ et al (2014) Inhibition of extracellular HMGB1 attenuates hyperoxia-induced inflammatory acute lung injury. Redox Biol 2:314–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan PC, Teng RJ, Chou CC, Wu TJ, Tsou Yau KI, Hsieh KH (1996) Impaired immune function in a premature infant with zinc deficiency after total parenteral nutrition. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi 37:364–369

    CAS  PubMed  Google Scholar 

  • Farrow KN, Groh BS, Schumacker PT et al (2008) Hyperoxia increases phosphodiesterase 5 (PDE5) expression and activity in ovine fetal pulmonary artery smooth muscle cells. Circ Res 102:226–233

    Article  CAS  PubMed  Google Scholar 

  • Farrow KN, Wedgwood S, Lee KJ et al (2010) Mitochondrial oxidant stress increases PDE5 activity in persistent pulmonary hypertension of the newborn. Respir Physiol Neurobiol 174:272–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei J, Viedt C, Soto U, Elsing C, Jahn L, Kreuzer J (2000) Endothelin-1 and smooth muscle cells. Arteriosc Thromb Vas Biol 20:1244–1249

    Article  CAS  Google Scholar 

  • Filippone M, Bonetto G, Cherubin E et al (2009) Childhood course of lung function in survivors of bronchopulmonary dysplasia. JAMA 302:1418–1420

    Article  CAS  PubMed  Google Scholar 

  • Fraisl P, Mazzone M, Schmidt T, Carmeliet T (2009) Regulation of angiogenesis by oxygen and metabolism. Dev Cell 16:167–179

    Article  CAS  PubMed  Google Scholar 

  • Frank L (1998) Development of the antioxidant defences in fetal life. Semin Neonatol 3:73–182

    Article  Google Scholar 

  • Frank DB, Peng T, Zepp JA et al (2016) Emergence of a wave of Wnt signaling that regulates lung alveologenesis by controlling epithelial self-renewal and differentiation. Cell Rep 17:2312–2325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman BA, Tanswell AK (1985) Biochemical and cellular aspects of pulmonary oxygen toxicity. Adv Free Radic Biol Med 1:133–164

    Article  CAS  Google Scholar 

  • Gaut JP, Byun J, Tran HD et al (2002) Myeloperoxidase produces nitrating oxidants in vivo. J Clin Invest 109:1311–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghisolfi J (1987) Taurine and the premature. Biol Neonate 52:78–86

    Article  CAS  PubMed  Google Scholar 

  • Ghosh R, Lipson KL, Sargent KE, Mercurio AM, Hunt JS, Ron D, Urano F (2010) Transcriptional regulation of VEGF-A by the unfolded protein response pathway. PLoS One 5:e9575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gitto E, Reiter RJ, Sabatino G et al (2005) Correlation among cytokines, bronchopulmonary dysplasia and modality of ventilation in preterm newborns: improvement with melatonin treatment. J Pineal Res 39:287–293

    Article  CAS  PubMed  Google Scholar 

  • Gitto E, Pellegrino S, D’Arrigo S, Barberi I, Reiter RJ (2009) Oxidative stress in resuscitation and in ventilation of newborns. Eur Respir J 34:1461–1469

    Article  CAS  PubMed  Google Scholar 

  • Groneck P, Speer CP (1995) Inflammatory mediators and bronchopulmonary dysplasia. Arch Dis Child Fetal Neonatal Ed 73:F1–F3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gryglewski RJ, Korbut R, Ocetkiewicz A (1978) Generation of prostacyclin by lungs in vivo and its release in to the circulation. Nature 2273:765–767

    Article  Google Scholar 

  • Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91:807–819

    Article  CAS  PubMed  Google Scholar 

  • Habre W, Peták F, Ruchonnet-Metrailler I et al (2006) The role of endothelin-1 in hyperoxia-induced lung injury in mice. Respir Res 7:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayashibe H, Asayama K, Dobashi K, Kato K (1990) Prenatal development of antioxidant enzymes in rat lung, kidney, and heart, marked increase in immunoreactive superoxide dismutases, glutathione peroxidase, and catalase in the kidney. Pediatr Res 27:472–475

    Article  CAS  PubMed  Google Scholar 

  • Heilman RP, Lagoski MB, Lee KJ et al (2015) Right ventricular cyclic nucleotide signaling is decreased in hyperoxia-induced pulmonary hypertension in neonatal mice. Am J Physiol Heart Circ Physiol 308:H1575–H1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heiss EH, Dirsch VM (2014) Regulation of eNOS enzyme activity by posttranslational modification. Curr Pharm Des 20:3503–3513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillman NH, Polglase GR, Pillow JJ, Saito M, Kallapur SG, Jobe AH (2011) Inflammation and lung maturation from stretch injury in preterm fetal sheep. Am J Physiol Lung Cell Mol Physiol 300:L232–L241

    Article  CAS  PubMed  Google Scholar 

  • Hillman N, Kallapur SG, Jobe A (2012) Physiology of transition from intrauterine to extrauterine life. Clin Perinatol 39:769–783

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosford GE, Olson DM (2003) Effects of hyperoxia on VEGF, its receptors, and HIF-2alpha in the newborn rat lung. Am J Physiol Lung Cell Mol Physiol 285:L161–L168

    Article  CAS  PubMed  Google Scholar 

  • Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, Beckman JS (1992) Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 298:431–437

    Article  CAS  PubMed  Google Scholar 

  • Jain L, Eaton DC (2006) Physiology of fetal lung fluid clearance and the effect of labor. Semin Perinatol 30:34–43

    Article  PubMed  Google Scholar 

  • Jankov RP, Johnstone L, Luo X, Robinson BH, Tanswell AK (2003) Macrophages as a major source of oxygen radicals in the hyperoxic newborn rat lung. Free Radic Biol Med 35:200–209

    Article  CAS  PubMed  Google Scholar 

  • Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K, Librowski T (2017) Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 25:110–114

    Google Scholar 

  • Jiang J-S, Chou H-C, Yeh T-F, Chen C-M (2015) Neonatal hyperoxia exposure induces kidney fibrosis in rats. Pediatr Neonatol 56:235–241

    Article  PubMed  Google Scholar 

  • Jing X, Huang YW, Jarzembowski J, Shi Y, Konduri GG, Teng RJ (2017) Caffeine ameliorates hyperoxia-induced lung injury by protecting GCH1 function in neonatal rat pups. Pediatr Res 82:483–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jobe AJ (1999) The new BPD: an arrest of lung development. Pediatrc Res 46:641–643

    Article  CAS  Google Scholar 

  • Johnson TJ, Patel AL, Jegier BJ, Engstrom JL, Meier PP (2013) Cost of morbidities in very low birth weight infants. J Pediatr 162:243–249

    Article  PubMed  Google Scholar 

  • Jong CJ, Azuma J, Schaffer S (2012) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42:2223–2232

    Article  CAS  PubMed  Google Scholar 

  • Kääpä P (1987) Platelet thromboxane B2 production in neonatal pulmonary hypertension. Arch Dis Child 62:195–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Ke X, Johnson H, Jing X, Michalkiewicz T, Huang YW, Lane RH, Konduri GG (2018) Persistent pulmonary hypertension alters epigenetic characteristics of endothelial nitric oxide synthase gene in a fetal lamb model. Physiol Genomics 50:828. https://doi.org/10.1152/physiolgenomics.00047.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearns S, Dawson R (2002) Cytoprotective effect of taurine against Hypochlorous acid toxicity to PC12 cells. In: Della Corte L, Huxtable RJ, Sgaragli G, Tipton KF (eds) Taurine 4. Advances in Experimental Medicine and Biology, vol 483

    Google Scholar 

  • Kettle AJ (1996) Neutrophils convert tyrosyl residues in albumin to chlorotyrosine. FEBS Lett 379:103–106

    Article  CAS  PubMed  Google Scholar 

  • Khemani EI, McElhinney DB, Rhein L, Andrade O, Lacro RV, Thomas KC, Mullen MP (2007) Pulmonary artery hypertension in formerly premature infants with bronchopulmonary dysplasia: clinical features and outcomes in the surfactant era. Pediatrics 120:1260–1269

    Article  PubMed  Google Scholar 

  • Kim M-J, Ryu J-C, Kwon Y, Lee S, Bae YS, Yoon J-H, Ryu J-H (2014) Dual oxidase 2 in lung epithelia is essential for hyperoxia-induced acute lung injury in mice. Antioxid Redox Signal 21:1803–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim FY, Barnes EA, Ying L, Chen C, Lee L, Alvira CM, Cornfield DN (2015) Pulmonary artery smooth muscle cell endothelin-1 expression modulates the pulmonary vascular response to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 308:L368–L377

    Article  CAS  PubMed  Google Scholar 

  • Klinger G, Sirota L, Lusky A, Reichman B (2006) Bronchopulmonary dysplasia in very low birth weight infants is associated with prolonged hospital stay. J Perinatol 26:640–644

    Article  CAS  PubMed  Google Scholar 

  • Konduri GG, Kim UO (2009) Advances in the diagnosis and management of persistent pulmonary hypertension of the newborn. Pediatr Clin N Am 56:579–600

    Article  Google Scholar 

  • Konduri GG, Mital S (2000) Adenosine and ATP cause nitric oxide-dependent pulmonary vasodilation in fetal lambs. Biol Neonate 78:220–229

    Article  CAS  PubMed  Google Scholar 

  • Konduri GG, Gervasio CT, Theodorou AA (1993) Role of adenosine triphosphate and adenosine in oxygen-induced pulmonary vasodilation in fetal lambs. Pediatr Res 33:533–539

    Article  CAS  PubMed  Google Scholar 

  • Konduri GG, Solimano A, Sokol GM, Singer J, Ehrenkranz RA, Singhal N et al (2004) A randomized trial of early versus standard inhaled nitric oxide therapy in term and near-term newborn infants with hypoxic respiratory failure. Pediatrics 113:559–564

    Article  PubMed  Google Scholar 

  • Konduri GG, Bakhutashvili I, Eis A, Pritchard K Jr (2007) Oxidant stress from uncoupled nitric oxide synthase impairs vasodilation in fetal lambs with persistent pulmonary hypertension. Am J Physiol Heart Circ Physiol 292:H1812–H1820

    Article  CAS  PubMed  Google Scholar 

  • Konduri GG, Bakhutashvili I, Eis A, Afolayan A (2013) Antenatal betamethasone improves postnatal transition in late preterm lambs with persistent pulmonary hypertension of the newborn. Pediatr Res 73:621–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konduri GG, Afolayan A, Eis A, Pritchard K, Teng R-J (2015) Interaction of endothelial nitric oxide synthase with mitochondria regulates oxidative stress and function in fetal pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 309:L1009–L1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konior A, Schramm A, Czesnikiewicz-Guzik M, Guzikcorresponding TJ (2014) NADPH oxidases in vascular pathology. Antioxid Redox Signal 20:2794–2814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuipers MT, van der Poll T, Schultz MJ, Wieland CW (2011) Bench-to-bedside review: damage-associated molecular patterns in the onset of ventilator-induced lung injury. Crit Care 15:235

    Article  PubMed  PubMed Central  Google Scholar 

  • Kukreja RC, Kontos HA, Hess ML, Ellis EF (1986) PGH synthase and lipoxygenase generate superoxide in the presence of NADH or NADPH. Cir Res 59:612–619

    Article  CAS  Google Scholar 

  • Kuzkaya N, Weissmann N, Harrison DG, Dikalov S (2003) Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase. J Biol Chem 278:22546–22554

    Article  CAS  PubMed  Google Scholar 

  • Lakshminrusimha S (2012) The pulmonary circulation in neonatal respiratory failure. Clin Perinatol 39:655–683

    Article  PubMed  PubMed Central  Google Scholar 

  • Lal CV, Olave N, Travers C et al (2018 Mar 8) Exosomal microRNA predicts and protects against severe bronchopulmonary dysplasia in extremely premature infants. JCI Insight 3(5)

    Google Scholar 

  • Lee KJ, Berkelhamer SK, Kim GA, Taylor JM, O’Shea KM, Steinhorn RH, Farrow KN (2014) Disrupted pulmonary artery cyclic guanosine monophosphate signaling in mice with hyperoxia-induced pulmonary hypertension. Am J Respir Cell Mol Biol 50:369–378

    PubMed  PubMed Central  Google Scholar 

  • León-Carmona JR, Galano A (2011) Is caffeine a good scavenger of oxygenated free radicals? J Phys Chem B 115:4538–4546

    Article  PubMed  CAS  Google Scholar 

  • Lin L, Balazy M, Pagano PJ, Nasjletti A (1994) Expression of prostaglandin H2-mediated mechanism of vascular contraction in hypertensive rats. Relation to lipoxygenase and prostacyclin synthase activities. Circ Res 74:197–205

    Article  CAS  PubMed  Google Scholar 

  • List BM, Klősch B, Vőlker C et al (1997) Characterization of bovine endothelial nitric oxide synthase as a homodimer with down-regulated uncoupled NADPH oxidase activity: tetrahydrobiopterin binding kinetics and role of haem in dimerization. Biochem J 323:159–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Xu X, Hu X et al (2010) Oxidative stress regulates left ventricular PDE5 expression in the failing heart. Circulation 121:1474–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu HY, Zhang J, Wang QX, Tang W, Zhang LJ (2015) Activation of the endoplasmic reticulum stress pathway involving CHOP in the lungs of rats with hyperoxia-induced bronchopulmonary dysplasia. Mol Med Rep 12:4494–4500

    Article  CAS  PubMed  Google Scholar 

  • Mahajan CN, Afolayan AJ, Eis A, Teng RJ, Konduri GG (2015) Altered prostanoid metabolism contributes to impaired angiogenesis in persistent pulmonary hypertension in a fetal lamb model. Pediatr Res 77:455–462

    Article  CAS  PubMed  Google Scholar 

  • Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9:2277–2293

    Article  CAS  PubMed  Google Scholar 

  • Maneenil G, Thatrimontrichai A, Janjindamai W, Dissaneevate S (2018) Effect of bosentan therapy in persistent pulmonary hypertension of the newborn. Pediatr Neonatol 59:58–64

    Article  PubMed  Google Scholar 

  • Marchi S, Patergnani S, Pinton P (2014) The endoplasmic reticulum–mitochondria connection: one touch, multiple functions. Biochim Biophys Acta 1837:461–469

    Article  CAS  PubMed  Google Scholar 

  • Meitzler JL, Antony S, Wu Y et al (2014) NADPH oxidases: a perspective on reactive oxygen species production in tumor biology. Antioxid Redox Signal 20:2873–2889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao RQ, Gao Y, Harrison KD et al (2006) Identification of a receptor necessary for Nogo-B stimulated chemotaxis and morphogenesis of endothelial cells. Proc Natl Acad Sci U S A 103:10997–11002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JD, Carlo WA (2007) Safety and effectiveness of permissive hypercapnia in the preterm infant. Curr Opin Pediatr 19:142–144

    Article  PubMed  Google Scholar 

  • Mirończuk-Chodakowska I, Witkowska AM, Zujko ME (2018) Endogenous non-enzymatic antioxidants in the human body. Adv Med Sci 63:68–78

    Article  PubMed  Google Scholar 

  • Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20:1126–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin FC 3rd. Ligating the ductus arteriosus before birth causes persistent pulmonary hypertension in the newborn lamb. Pediatr Res 1989; 25:245–250

    Article  PubMed  Google Scholar 

  • Mosca F, Colnaghi M, Fumagalli M (2011) BPD: old and new problems. J Matern Fetal Neonatal Med 24(Suppl 1):80–82

    Article  PubMed  Google Scholar 

  • Nauseef WM (2008) Biological roles for the NOX family NADPH oxidases. J Biol Chem 283:16961–16965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nisoli E, Clementi E, Paolucci C et al (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–899

    Article  CAS  PubMed  Google Scholar 

  • Northway WH Jr, Rosan RC, Porter DY (1967) Pulmonary disease following respiratory therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med 276:357–368

    Article  PubMed  Google Scholar 

  • Northway WH Jr, Moss RB, Carlisle KB et al (1990) Late pulmonary sequelae of bronchopulmonary dysplasia. N Engl J Med 323:1793–1799

    Article  PubMed  Google Scholar 

  • O’Brodovich H, Canessa C, Ueda J et al (1993) Expression of the epithelial Na+ channel in the developing rat lung. Am J Phys 265:C491–C496

    Article  Google Scholar 

  • O’Reilly M, Thébaud B (2014) Animal models of bronchopulmonary dysplasia. The term rat models. Am J Physiol Lung Cell Mol Physiol 307:L948–L958

    Article  PubMed  CAS  Google Scholar 

  • Oury TD, Chang L, Marklund S, Day BJ, Crapo JD (1994) Immunocytochemical localization of extracellular superoxide dismutase in human lung. Lab Investig 70:889–898

    CAS  PubMed  Google Scholar 

  • Oury TD, Day BJ, Crapo JD (1996) Extracellular superoxide dismutase in vessels and airways of humans and baboons. Free Radic Biol Med 20:957–965

    Article  CAS  PubMed  Google Scholar 

  • Pan L, Fu J-H, Xue X-D, Xu W, Zhou P, Wei P (2009) Melatonin protects against oxidative damage in a neonatal rat model of bronchopulmonary dysplasia. World J Pediatr 5:216–221

    Article  CAS  PubMed  Google Scholar 

  • Park WH (2013) The effects of exogenous H2O2 on cell death, reactive oxygen species and glutathione levels in calf pulmonary artery and human umbilical vein endothelial cells. Int J Mol Med 31:471–476

    Article  CAS  PubMed  Google Scholar 

  • Park EJ, Grabińska KA, Guan Z, Sessa WC (2016) NgBR is essential for endothelial cell glycosylation and vascular development. EMBO Rep 17:167–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel RP, McAndrew J, Sellak H, White CR, Hanjoong J, Freeman BA, Darley-Usmar VM (1999) Biological aspects of reactive nitrogen species. Biochim Biophys Acta (BBA) – Bioenergetics 1411:385–400

    Article  CAS  Google Scholar 

  • Patel RM, Kandefer S, Walsh MC et al (2015) Causes and timing of death in extremely premature infants from 2000 through 2011. N Engl J Med 372:331–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira ER, Liao N, Neale GA, Hendershot LM (2010) Transcriptional and post-transcriptional regulation of proangiogenic factors by the unfolded protein response. PLoS One 5:e12521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perez M, Lee KJ, Cardona HJ et al (2017) Aberrant cGMP signaling persists during recovery in mice with oxygen-induced pulmonary hypertension. PLoS One 12:e0180957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poon AW, Ma EX, Vadivel A, Jung S, Khoja Z, Stephens L, Thébaud B, Wintermark P (2016) Impact of bronchopulmonary dysplasia on brain and retina. Biol Open 5:475–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popescu CR, Sutherland MR, Cloutier A et al (2013) Hyperoxia exposure impairs nephrogenesis in the neonatal rat: role of HIF-1α. PLoS One 8:e82421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pritchard KA Jr, Ackerman AW, Gross ER et al (2001) Heat shock protein 90 mediates the balance of nitric oxide and superoxide anion from endothelial nitric-oxide synthase. J Biol Chem 276:17621–17624

    Article  CAS  PubMed  Google Scholar 

  • Qin Z, Reszka KJ, Fukai T, Weintraub NL (2008) Extracellular superoxide dismutase (ecSOD) in vascular biology: an update on exogenous gene transfer and endogenous regulators of ecSOD. Transl Res 151:68–78

    Article  CAS  PubMed  Google Scholar 

  • Rabi Y, Yee W, Chen SY, Singhal N (2006) Oxygen saturation trends immediately after birth. J Pediatr 148:590–594

    Article  PubMed  Google Scholar 

  • Ramji S, Ahuja S, Thirupuram S, Rootwelt T, Rooth G, Saugstad OD (1993) Resuscitation of asphyxic newborn infants with room air or 100% oxygen. Pediatr Res 34:809–812

    Article  CAS  PubMed  Google Scholar 

  • Ratner V, Starkov A, Matsiukevich D, Polin RA, Ten VS (2009) Mitochondrial dysfunction contributes to alveolar developmental arrest in hyperoxia-exposed mice. Am J Respir Cell Mol Biol 40:511–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravi K, Brennan LA, Levic S, Ross PA, Black SM (2004) S-nitrosylation of endothelial nitric oxide synthase is associated with monomerization and decreased enzyme activity. PNAS 101:2619–2624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter C, Teng RJ, Beckman JS (2000) Superoxide reacts with nitric oxide nitrates tyrosine at physiologic pH via peroxynitrite. J Biol Chem 275:32460–32466

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan D-X, Manchester LC, Lopez-Burillo S, Sainz RM, Mayo JC (2003) Melatonin: detoxification of oxygen and nitrogen-based toxic reactants. Adv Exp Med Biol 527:539–548

    Article  CAS  PubMed  Google Scholar 

  • Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E (2008) The antioxidant properties of serum albumin. FEBS Lett 582:1783–1787

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg AA, Kennaugh J, Koppenhafer SL, Loomis M, Chatfield BA, Abman SH (1993) Elevated immunoreactive endothelin-1 levels in newborn infants with persistent pulmonary hypertension. J Pediatr 123:109–114

    Article  CAS  PubMed  Google Scholar 

  • Santos CX, Tanaka LY, Wosniak J, Laurindo FR (2009) Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 11:2409–2427

    Article  CAS  PubMed  Google Scholar 

  • Saugstad OD (2004) The role of oxygen in neonatal resuscitation. Clin Perinatol 31:431–443

    Article  PubMed  Google Scholar 

  • Saugstad OD (2010) Oxygen and oxidative stress in bronchopulmonary dysplasia. J Perinat Med 38:571–577

    Article  CAS  PubMed  Google Scholar 

  • Saugstad OD, Ramji S, Vento M (2005) Resuscitation of depressed newborn infants with ambient air or pure oxygen: a meta-analysis. Biol Neonate 87:27–34

    Article  PubMed  Google Scholar 

  • Schmidt B, Roberts RS, Davis P et al (2006) Caffeine therapy for apnea of prematurity. N Engl J Med 354:2112–2121

    Article  CAS  PubMed  Google Scholar 

  • Schulzke SM, Kaempfen S, Patole SK (2014) Pentoxifylline for the prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev 11:CD010018

    Google Scholar 

  • Sibal L, Agarwal SC, Home PD, Boger RH (2010) The role of asymmetric dimethylarginine (ADMA) in endothelial dysfunction and cardiovascular disease. Curr Cardiol Rev 6:82–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirokmány G, Donkó Á, Geiszt M (2016) Nox/Duox family of NADPH oxidases: lessons from knockout mouse models. Trend Pharmacol Sci 37:318–327

    Article  CAS  Google Scholar 

  • Smith H, Jones J (2001) Non-invasive assessment of shunt and ventilation/perfusion ratio in neonates with pulmonary failure. Arch Dis Child Fetal Neonatal Ed 85:F127–F132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith WL, Garavito RM, DeWitt DL (1996) Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and −2. J Biol Chem 271:33157–33160

    Article  CAS  PubMed  Google Scholar 

  • Stasch J-P, Pacher P, Evgenov OV (2011) Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation 123:2263–2273

    Article  PubMed  PubMed Central  Google Scholar 

  • Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235:1043–1046

    Article  CAS  PubMed  Google Scholar 

  • Suh Y-A, Arnold RS, Lassegu B et al (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401:79–82

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Fratz S, Sharma S et al (2011) C-terminus of heat shock protein 70–interacting protein–dependent GTP cyclohydrolase I degradation in lambs with increased pulmonary blood flow. Am J Respir Cell Mol Biol 45:163–171

    Article  CAS  PubMed  Google Scholar 

  • Tadokoro KS, Rana U, Jing X, Konduri GG, Miao QR, Teng R-J (2016) Nogo-B receptor modulates pulmonary artery smooth muscle cell function in developing lungs. Am J Respir Cell Mol Biol 54:892–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang D, Kang R, Zeh HJ III, Lotze MT (2011) High-mobility group box 1, oxidative stress, and disease. Antioxid Redox Signal 14:1315–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapiero H, Townsend DM, Tew TD (2003) The antioxidant role of selenium and seleno-compounds. Biomed Pharmacother 57:134–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tate RM, Morris HG, Schroeder WR, Repine JE (1984) Oxygen metabolites stimulate thromboxane production and vasoconstriction in isolated saline-perfused rabbit lungs. J Clin Invest 74:608–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng RJ, Wu TJ (2013) Persistent pulmonary hypertension of the newborn. J Formos Med Assoc 112:177–184

    Article  PubMed  PubMed Central  Google Scholar 

  • Teng RJ, Ye YZ, Parks DA, Beckman JS (2002) Urate produced during hypoxia protects heart proteins from peroxynitrite-mediated protein nitration. Free Radic Biol Med 33:1243–1249

    Article  CAS  PubMed  Google Scholar 

  • Teng RJ, Eis A, Bakhutashvili I, Arul N, Konduri GG (2009) Increased superoxide production contributes to the impaired angiogenesis of fetal pulmonary arteries with in utero pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 297:L184–L195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng R-J, Du J, Bakhutashvili I, Eis A et al (2011a) Sepiapterin improves angiogenesis of pulmonary artery endothelial cells in persistent pulmonary hypertension of the newborn by recoupling endothelial nitric oxide synthase. Am J Physiol Lung Cell Mol Physiol 301:L334–L345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng RJ, Wu TJ, Bisig GA, Eis A, Pritchard KA Jr, Konduri GG (2011b) Nitrotyrosine impairs angiogenesis and uncouples eNOS activity of pulmonary artery endothelial cells isolated from developing sheep lungs. Pediatr Res 69:112–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng R-J, Du J, Welak S, Guan T, Eis A, Shi Y, Konduri GG (2012) Cross-talk between NADPH oxidase and autophagy in pulmonary artery endothelial cells with intrauterine persistent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 302:L651–L663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng RJ, Rana U, Afolayan AJ, Zhao B, Miao QR, Konduri GG (2014) Nogo-B receptor modulates angiogenesis response of pulmonary artery endothelial cells through eNOS coupling. Am J Respir Cell Mol Biol 51:169–177

    PubMed  PubMed Central  Google Scholar 

  • Teng R-J, Wu T-J, Afolayan A, Konduri GG (2016) Nitrotyrosine impairs mitochondrial function in fetal lamb pulmonary artery endothelial cells. Am J Physiol Cell Physiol 310:C80–C88

    Article  PubMed  Google Scholar 

  • Teng RJ, Jing X, Michalkiewicz T, Afolayan AJ, Wu TJ, Konduri GG (2017) Attenuation of endoplasmic reticulum stress by caffeine ameliorates hyperoxia-induced lung injury. Am J Physiol Lung Cell Mol Physiol 312:L586–L598

    Article  PubMed  PubMed Central  Google Scholar 

  • Thébaud B (2007) Angiogenesis in lung development, injury and repair: implications for chronic lung disease of prematurity. Neonatology 91:291–297

    Article  PubMed  Google Scholar 

  • Thébaud B, Abman SH (2007) Where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med 175:978–985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tien M, Berlett BS, Levine RL, Chock PB, Stadtman ER (1999) Peroxynitrite-mediated modification of proteins at physiological carbon dioxide concentration: pH dependence of carbonyl formation, tyrosine nitration, and methionine oxidation. Proc Natl Acad Sci U S A 96:7809–7814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Travadi JN, Patole SK (2003) Phosphodiesterase inhibitors for persistent pulmonary hypertension of the newborn: a review. Pediatr Pulmonol 36:529–535

    Article  CAS  PubMed  Google Scholar 

  • Turell L, Radi R, Alvarez B (2013) The thiol pool in human plasma: the central contribution of albumin to redox processes. Free Radic Biol Med 65:244–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Marter LJ (2006) Progress in discovery and evaluation of treatment to prevent bronchopulmonary dysplasia. Biol Neonate 89:303–312

    Article  PubMed  Google Scholar 

  • Vásquez-Vivar J, Martásek P, Whitsett J, Joseph J, Kalyanaraman B (2002) The ratio between tetrahydrobiopterin and oxidized tetrahydrobiopterin analogues controls superoxide release from endothelial nitric oxide synthase: an EPR spin trapping study. Biochem J 362:733–739

    Article  PubMed  PubMed Central  Google Scholar 

  • Vento M, Asensi M, Sastre J, García-Sala F, Pallardó FV, Viña J (2001) Resuscitation with room air instead of 100% oxygen prevents oxidative stress in moderately asphyxiated term neonates. Pediatrics 107:642–647

    Article  CAS  PubMed  Google Scholar 

  • Vento M, Sastre J, Asensi M, Lloret A, García-Sala F, Viña J (2003) Oxidative stress in asphyxiated term infants resuscitated with 100% oxygen. J Pediatr 142:240–246

    Article  CAS  PubMed  Google Scholar 

  • Vento M, Moro M, Escrig R et al (2009) Preterm resuscitation with low oxygen causes less oxidative stress, inflammation, and chronic lung disease. Pediatrics 124:e439–e449

    Article  PubMed  Google Scholar 

  • Verner AM, McGuire W, Craig JS (2007) Effect of taurine supplementation on growth and development in preterm or low birth weight infants. Cochrane Database Syst Rev 4:CD006072

    Google Scholar 

  • Walsh-Sukys MC, Tyson JE, Wright LL et al (2000) Persistent pulmonary hypertension of the newborn in the era before nitric ocide: practice variation and outcomes. Pediatrics 105:14–20

    Article  CAS  PubMed  Google Scholar 

  • Walters DM, Cho H-Y, Kleeberger SR (2008) Stress and antioxidants in the pathogenesis of pulmonary fibrosis: a potential role for Nrf2. Antioxid Redox Signal 10:321–332

    Article  CAS  PubMed  Google Scholar 

  • Watterberg KL, Demers LM, Scott SM, Murphy S (1996) Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops. Pediatrics 97:210–215

    CAS  PubMed  Google Scholar 

  • Waypa G, Marks J, Guzy R, Mungai P, Schriewer J, Dokic D, Schumacker P (2010) Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ Res 106:526–535

    Article  CAS  PubMed  Google Scholar 

  • Waypa GB, Marks JD, Guzy RD et al (2013) Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation. Am J Respir Crit Care Med 187:424–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wedgwood S, Steinhorn RH (2014) Role of reactive oxygen species in neonatal pulmonary vascular disease. Antioxid Redox Signal 21:1926–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wedgwood S, Dettman RW, Black SM (2001) ET-1 stimulates pulmonary arterial smooth muscle cell proliferation via induction of reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 281:L1058–L1067

    Article  CAS  PubMed  Google Scholar 

  • Wedgwood S, Lakshminrusimha S, Fukai T, Russell J, Schumacker P, Steinhorn R (2011) Hydrogen peroxide regulates extracellular superoxide dismutase activity and expression in neonatal pulmonary hypertension. Antioxid Redox Signal 15:1497–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wedgwood S, Lakshminrusimha S, Czech L, Schumacker PT, Steinhorn RH (2013) Increased p22phox/Nox4 expression triggers remodeling through hydrogen peroxide signaling in persistent pulmonary hypertension of the newborn. Antioxid Redox Signal 18:1765–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weichelt U, Cay R, Schmitz T et al (2013) Prevention of hyperoxia-mediated pulmonary inflammation in neonatal rats by caffeine. Eur Respir J 41:966–973

    Article  CAS  PubMed  Google Scholar 

  • Weiss SJ, Klein R, Slivka A, Wei M (1982) Chlorination of taurine by human neutrophils-evidence for hypochlorous acid generation. J Clin Invest 70:598–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welty SE (2001) Is there a role for antioxidant therapy in bronchopulmonary dysplasia? J Nutr 131:947S–950S

    Article  CAS  PubMed  Google Scholar 

  • Williams AB, Schumacher B (2016) p53 in the DNA-damage-repair process. Cold Spring Harb Perspect Med 6(5)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winterbourn CC (1995) Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett 82-83:969–974

    Article  CAS  PubMed  Google Scholar 

  • Winterbourn CC, Kettle AJ (2000) Biomarkers of myeloperoxidase-derived hypochlorous acid. Free Radic Biol Med 29:403–409

    Article  CAS  PubMed  Google Scholar 

  • Wong PM, Lees AN, Louw J et al (2008) Emphysema in young adult survivors of moderate-to-severe bronchopulmonary dysplasia. Eur Respir J 32:321–328

    Article  CAS  PubMed  Google Scholar 

  • Yee M, White RJ, Awad HA, Bates WA, McGrath-Morrow SA, O’Reilly MA (2011) Neonatal hyperoxia causes pulmonary vascular disease and shortens life span in aging mice. Am J Path 178:2601–2609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota T, Shiraishi R, Aida T et al (2014) Thromboxane A2 receptor stimulation promotes closure of the rat ductus arteriosus through enhancing neointima formation. PLoS One 9:e94895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT, Back SH, Kaufman RJ (2006) Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 124:587–599

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Zhu H, Zou M-H (2012) Non-covalent interaction between polyubiquitin and GTP cyclohydrolase 1 dictates its degradation. PLoS One 7:e43306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Settle M, Brubaker G, Schmitt D, Hazen SL, Smith JD, Kinter M (2005) Localization of nitration and chlorination sites on apolipoprotein A-I catalyzed by myeloperoxidase in human atheroma and associated oxidative impairment in ABCA1-dependent cholesterol efflux from macrophages. J Biol Chem 280:38–47

    Article  CAS  PubMed  Google Scholar 

  • Ziberna L, Martelanc M, Franko M, Passamonti S (2016) Bilirubin is an endogenous antioxidant in human vascular endothelial cells. Sci Rep 6:29240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou MH, Ullrich V (1996) Peroxynitrite formed by simultaneous generation of nitric oxide and superoxide selectively inhibits bovine aortic prostacyclin synthase. FEBS Lett 382:101–104

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru-Jeng Teng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Teng, RJ. (2019). Oxidative Stress in Neonatal Lung Diseases. In: Chakraborti, S., Chakraborti, T., Das, S., Chattopadhyay, D. (eds) Oxidative Stress in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8413-4_3

Download citation

Publish with us

Policies and ethics