Skip to main content

Immunological Basis of Oxidative Stress-Induced Lung Inflammation in Asthma and COPD

  • Chapter
  • First Online:
Oxidative Stress in Lung Diseases

Abstract

Oxidative stress is an outcome of imbalance in production vis-à-vis removal of reactive oxygen species (ROS). The critical role of oxidative stress in several chronic inflammatory diseases has been reported. In this chapter, we have discussed the participation of oxidative stress in the pathogenesis of chronic inflammatory disease of lungs: asthma and chronic obstructive pulmonary disease (COPD). Despite the differences in etiology, immunology, pathogenesis, and clinical symptoms, the involvement of oxidative stress in the manifestation of chronic airway inflammation is the most common feature of both respiratory disorders. First, we have discussed the role of various types of immune cell in the orchestration of oxidative stress-mediated lung inflammation in both asthma and COPD. Next, the contribution of cellular sources of ROS (mitochondria and NADPH oxidase) in activation of cellular signaling pathways, particularly nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear erythroid 2-related factor 2 (Nrf2), is elaborated. Finally, we have highlighted the involvement of oxidative stress in the manifestation of steroid-stable conditions in patients with severe asthma and COPD. Unraveling the participation of ROS at cellular as well as intracellular events may enhance our understanding of the pathogenesis of both asthma and COPD for the development of effective treatment strategies in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abboud RT, Vimalanathan S (2008) Pathogenesis of COPD. Part I. The role of protease-antiprotease imbalance in emphysema. Int J Tuberc Lung Dis 12(4):361–367

    CAS  PubMed  Google Scholar 

  • Aguilera-Aguirre L et al (2009) Mitochondrial dysfunction increases allergic airway inflammation. J Immunol 183(8):5379–5387

    Article  CAS  PubMed  Google Scholar 

  • Ahmad T et al (2015) Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: implications for chronic obstructive pulmonary disease. FASEB J 29(7):2912–2929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed SM et al (2017) Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta Mol basis Dis 1863(2):585–597

    Article  CAS  PubMed  Google Scholar 

  • Aldridge RE et al (2002) Eosinophil peroxidase produces hypobromous acid in the airways of stable asthmatics. Free Radic Biol Med 33(6):847–856

    Article  CAS  PubMed  Google Scholar 

  • Amara N et al (2007) Diesel exhaust particles induce matrix metalloprotease-1 in human lung epithelial cells via a NADP(H) oxidase/NOX4 redox-dependent mechanism. Am J Phys Lung Cell Mol Phys 293(1):L170–L181

    CAS  Google Scholar 

  • Bafadhel M et al (2016) Blood eosinophils and outcomes in severe hospitalized exacerbations of COPD. Chest 150(2):320–328

    Article  PubMed  Google Scholar 

  • Baldwin AS Jr (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–683

    Article  CAS  PubMed  Google Scholar 

  • Balhara J, Gounni AS (2012) The alveolar macrophages in asthma: a double-edged sword. Mucosal Immunol 5(6):605–609

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ (1994) Air pollution and asthma. Postgrad Med J 70(823):319–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes, P.J., Alveolar macrophages as orchestrators of COPD. COPD, 2004a. 1(1): p. 59-70.

    Article  PubMed  Google Scholar 

  • Barnes PJ (2004b) Mediators of chronic obstructive pulmonary disease. Pharmacol Rev 56(4):515–548

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ (2007) New molecular targets for the treatment of neutrophilic diseases. J Allergy Clin Immunol 119(5):1055–1062. quiz 1063-4

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ (2009) The cytokine network in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 41(6):631–638

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ (2013) Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol 131(3):636–645

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ (2016) Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 138(1):16–27

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ, Ito K, Adcock IM (2004) Corticosteroid resistance in chronic obstructive pulmonary disease: inactivation of histone deacetylase. Lancet 363(9410):731–733

    Article  CAS  PubMed  Google Scholar 

  • Bergin DA et al (2008) Activation of the epidermal growth factor receptor (EGFR) by a novel metalloprotease pathway. J Biol Chem 283(46):31736–31744

    Article  CAS  PubMed  Google Scholar 

  • Biswas SK (2016a) Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxidative Med Cell Longev 2016:9

    Article  CAS  Google Scholar 

  • Biswas SK (2016b) Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxidative Med Cell Longev 2016:5698931

    Article  CAS  Google Scholar 

  • Bokoch GM, Knaus UG (2003) NADPH oxidases: not just for leukocytes anymore! Trends Biochem Sci 28(9):502–508

    Article  CAS  PubMed  Google Scholar 

  • Borgerding M, Klus H (2005) Analysis of complex mixtures--cigarette smoke. Exp Toxicol Pathol 57(Suppl 1):43–73

    Article  CAS  PubMed  Google Scholar 

  • Bratke K et al (2007) Dendritic cell subsets in human bronchoalveolar lavage fluid after segmental allergen challenge. Thorax 62(2):168–175

    Article  PubMed  Google Scholar 

  • Brennan ML et al (2002) A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J Biol Chem 277(20):17415–17427

    Article  CAS  PubMed  Google Scholar 

  • Brown DI, Griendling KK (2009) Nox proteins in signal transduction. Free Radic Biol Med 47(9):1239–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown V et al (2009) Dysregulated apoptosis and NFκB expression in COPD subjects. Respir Res 10(1):24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Capaldi RA (1990) Structure and function of cytochrome c oxidase. Annu Rev Biochem 59:569–596

    Article  CAS  PubMed  Google Scholar 

  • Caramori G et al (2003) Nuclear localisation of p65 in sputum macrophages but not in sputum neutrophils during COPD exacerbations. Thorax 58(4):348–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrasco E et al (2016) Switching on a transient endogenous ROS production in mammalian cells and tissues. Methods 109:180–189

    Article  CAS  PubMed  Google Scholar 

  • Carvalho LC, Vidigal P, Amâncio S (2015) Oxidative stress homeostasis in grapevine (Vitis vinifera L.). Front Environ Sci:3(20)

    Google Scholar 

  • Chang Y et al (2012) Th17-associated cytokines promote human airway smooth muscle cell proliferation. FASEB J 26(12):5152–5160

    Article  CAS  PubMed  Google Scholar 

  • Charokopos N et al (2009) Bronchial asthma, chronic obstructive pulmonary disease and NF-kappaB. Curr Med Chem 16(7):867–883

    Article  CAS  PubMed  Google Scholar 

  • Chesne J et al (2014) IL-17 in severe asthma. Where do we stand? Am J Respir Crit Care Med 190(10):1094–1101

    Article  CAS  PubMed  Google Scholar 

  • Chien JW et al (2013) Increased IL-17A secreting CD4+ T cells, serum IL-17 levels and exhaled nitric oxide are correlated with childhood asthma severity. Clin Exp Allergy 43(9):1018–1026

    Article  CAS  PubMed  Google Scholar 

  • Ciencewicki J, Trivedi S, Kleeberger SR (2008) Oxidants and the pathogenesis of lung diseases. J Allergy Clin Immunol 122(3):456–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloonan SM, Choi AM (2012) Mitochondria: commanders of innate immunity and disease? Curr Opin Immunol 24(1):32–40

    Article  CAS  PubMed  Google Scholar 

  • Cook PC, MacDonald AS (2016) Dendritic cells in lung immunopathology. Semin Immunopathol 38(4):449–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosio BG et al (2004a) Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J Exp Med 200(5):689–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosio BG et al (2004b) Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J Exp Med 200(5):689–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosio BG et al (2016) Defining the Asthma-COPD overlap syndrome in a COPD cohort. Chest 149(1):45–52

    Article  PubMed  Google Scholar 

  • Csillag A et al (2010) Pollen-induced oxidative stress influences both innate and adaptive immune responses via altering dendritic cell functions. J Immunol 184(5):2377–2385

    Article  CAS  PubMed  Google Scholar 

  • Dahlgren C, Karlsson A (1999a) Respiratory burst in human neutrophils. J Immunol Methods 232(1-2):3–14

    Article  CAS  PubMed  Google Scholar 

  • Dahlgren C, Karlsson A (1999b) Respiratory burst in human neutrophils. J Immunol Methods 232(1):3–14

    Article  CAS  PubMed  Google Scholar 

  • Dent G et al (2014) Synergic production of neutrophil chemotactic activity by colonic epithelial cells and eosinophils. Immunobiology 219(10):793–797

    Article  CAS  PubMed  Google Scholar 

  • Di Stefano A et al (2002) Increased expression of nuclear factor-kappaB in bronchial biopsies from smokers and patients with COPD. Eur Respir J 20(3):556–563

    Article  PubMed  CAS  Google Scholar 

  • Diamond G, Legarda D, Ryan LK (2000) The innate immune response of the respiratory epithelium. Immunol Rev 173:27–38

    Article  CAS  PubMed  Google Scholar 

  • Dinkova-Kostova AT, Abramov AY (2015) The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med 88(Pt B):179–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dragon S et al (2014) IL-17A mediates a selective gene expression profile in asthmatic human airway smooth muscle cells. Am J Respir Cell Mol Biol 50(6):1053–1063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dua B et al (2010) Myeloid and plasmacytoid dendritic cells in induced sputum after allergen inhalation in subjects with asthma. J Allergy Clin Immunol 126(1):133–139

    Article  CAS  PubMed  Google Scholar 

  • Emelyanov A et al (2001) Elevated concentrations of exhaled hydrogen peroxide in asthmatic patients. Chest 120(4):1136–1139

    Article  CAS  PubMed  Google Scholar 

  • Erzurum SC (2016) New insights in oxidant biology in asthma. Ann Am Thoracic Soc 13(Suppl 1):S35–S39

    Google Scholar 

  • Fahn HJ et al (1998) Smoking-associated mitochondrial DNA mutations and lipid peroxidation in human lung tissues. Am J Respir Cell Mol Biol 19(6):901–909

    Article  CAS  PubMed  Google Scholar 

  • Fahy JV, Dickey BF (2010) Airway mucus function and dysfunction. N Engl J Med 363(23):2233–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floreani AA et al (2003) Smoke and C5a induce airway epithelial intercellular adhesion molecule-1 and cell adhesion. Am J Respir Cell Mol Biol 29(4):472–482

    Article  CAS  PubMed  Google Scholar 

  • Freeman CM et al (2009) Lung dendritic cell expression of maturation molecules increases with worsening chronic obstructive pulmonary disease. Am J Respir Crit Care Med 180(12):1179–1188

    Article  PubMed  PubMed Central  Google Scholar 

  • Freeman CM et al (2010) Cytotoxic potential of lung CD8+ T cells increases with COPD severity and with in vitro stimulation by IL-18 or IL-15. J Immunol (Baltimore, Md. : 1950) 184(11):6504–6513

    Article  CAS  Google Scholar 

  • Fujisawa T et al (2011) NF-kappaB mediates IL-1beta- and IL-17A-induced MUC5B expression in airway epithelial cells. Am J Respir Cell Mol Biol 45(2):246–252

    Article  CAS  PubMed  Google Scholar 

  • Gagliardo R et al (2003) Persistent activation of nuclear factor-kappaB signaling pathway in severe uncontrolled asthma. Am J Respir Crit Care Med 168(10):1190–1198

    Article  PubMed  Google Scholar 

  • Gagliardo R et al (2011) IκB kinase-driven nuclear factor-κB activation in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol 128(3):635–645. e1-2

    Article  CAS  PubMed  Google Scholar 

  • Gao W et al (2015) Bronchial epithelial cells: The key effector cells in the pathogenesis of chronic obstructive pulmonary disease? Respirology 20(5):722–729

    Article  PubMed  Google Scholar 

  • Gao J et al (2017) Correlation between fractional exhaled nitric oxide and sputum eosinophilia in exacerbations of COPD. Int J Chron Obstruct Pulmon Dis 12:1287–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Givi ME et al (2012) Dendritic cells in pathogenesis of COPD. Curr Pharm Des 18(16):2329–2335

    Article  CAS  PubMed  Google Scholar 

  • Habibovic A et al (2016a) DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma. JCI Insight 1(18):e88811

    Article  PubMed  PubMed Central  Google Scholar 

  • Habibovic A et al (2016b) DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma. JCI Insight 1(18):e88811

    Article  PubMed  PubMed Central  Google Scholar 

  • Halwani R, Al-Muhsen S, Hamid Q (2013) T helper 17 cells in airway diseases: from laboratory bench to bedside. Chest 143(2):494–501

    Article  CAS  PubMed  Google Scholar 

  • Hammad H, Lambrecht BN (2015) Barrier epithelial cells and the control of type 2 immunity. Immunity 43(1):29–40

    Article  CAS  PubMed  Google Scholar 

  • Hara H et al (2013) Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am J Phys Lung Cell Mol Phys 305(10):L737–L746

    CAS  Google Scholar 

  • Harijith A, Natarajan V, Fu P (2017) The role of nicotinamide adenine dinucleotide phosphate oxidases in lung architecture remodeling. Antioxidants (Basel):6(4)

    Article  PubMed Central  CAS  Google Scholar 

  • Hart LA et al (1998) Activation and localization of transcription factor, nuclear factor-kappaB, in asthma. Am J Respir Crit Care Med 158(5 Pt 1):1585–1592

    Article  CAS  PubMed  Google Scholar 

  • Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    Article  CAS  PubMed  Google Scholar 

  • Hellermann GR et al (2002) Mechanism of cigarette smoke condensate-induced acute inflammatory response in human bronchial epithelial cells. Respir Res 3:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Herbert C et al (2010) Alveolar macrophages stimulate enhanced cytokine production by pulmonary CD4(+) T-Lymphocytes in an exacerbation of murine chronic asthma. Am J Pathol 177(4):1657–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hew M et al (2006) Relative corticosteroid insensitivity of peripheral blood mononuclear cells in severe asthma. Am J Respir Crit Care Med 174(2):134–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiemstra PS, McCray PB, Bals R (2015) The innate immune function of airway epithelial cells in inflammatory lung disease. Eur Respir J 45(4):1150–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinz M, Scheidereit C (2014) The IkappaB kinase complex in NF-kappaB regulation and beyond. EMBO Rep 15(1):46–61

    Article  CAS  PubMed  Google Scholar 

  • Hoenderdos K, Condliffe A (2013) The neutrophil in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 48(5):531–539

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann RF et al (2013) Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells. Respir Res 14:97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hogg JC et al (2004) The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 350(26):2645–2653

    Article  CAS  PubMed  Google Scholar 

  • Houghton AM et al (2006) Elastin fragments drive disease progression in a murine model of emphysema. J Clin Invest 116(3):753–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hristova M et al (2016) Airway epithelial dual oxidase 1 mediates allergen-induced IL-33 secretion and activation of type 2 immune responses. J Allergy Clin Immunol 137(5):1545–1556. e11

    Article  CAS  PubMed  Google Scholar 

  • Huang C et al (2001) Hydrogen peroxide mediates activation of nuclear factor of activated T cells (NFAT) by Nickel subsulfide. Cancer Res 61(22):8051–8057

    CAS  PubMed  Google Scholar 

  • Huang F et al (2017) Association of imbalance of effector T cells and regulatory cells with the severity of asthma and allergic rhinitis in children. Allergy Asthma Proc 38(6):70–77

    Article  PubMed  CAS  Google Scholar 

  • Iizuka T et al (2005) Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes Cells 10(12):1113–1125

    Article  CAS  PubMed  Google Scholar 

  • Iles KE, Forman HJ (2002) Macrophage signaling and respiratory burst. Immunol Res 26(1-3):95–105

    Article  CAS  PubMed  Google Scholar 

  • Ilumets H et al (2007) Matrix metalloproteinases -8, -9 and -12 in smokers and patients with Stage 0 COPD. Int J Chron Obstruct Pulmon Dis 2(3):369–379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito S et al (2015) PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Autophagy 11(3):547–559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iyer D, Mishra N, Agrawal A (2017) Mitochondrial function in allergic disease. Curr Allergy Asthma Rep 17(5):29

    Article  PubMed  CAS  Google Scholar 

  • Janssen-Heininger YMW et al (2009) Nuclear factor κB, airway epithelium, and asthma: avenues for redox control. Proc Am Thorac Soc 6(3):249–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaroenpool J et al (2016) Aberrant neutrophil function among heavy smokers and chronic obstructive pulmonary disease patients. Asian Pac J Allergy Immunol 34(4):278–283

    CAS  PubMed  Google Scholar 

  • Jiang Z, Zhu L (2016) Update on molecular mechanisms of corticosteroid resistance in chronic obstructive pulmonary disease. Pulm Pharmacol Ther 37:1–8

    Article  PubMed  CAS  Google Scholar 

  • Kang JH, Hwang SM, Chung IY (2015) S100A8, S100A9 and S100A12 activate airway epithelial cells to produce MUC5AC via extracellular signal-regulated kinase and nuclear factor-kappaB pathways. Immunology 144(1):79–90

    Article  CAS  PubMed  Google Scholar 

  • Kankaanranta H et al (2000) Delayed eosinophil apoptosis in asthma. J Allergy Clin Immunol 106(1 Pt 1):77–83

    Article  CAS  PubMed  Google Scholar 

  • Kierstein S et al (2008) Ozone inhalation induces exacerbation of eosinophilic airway inflammation and hyperresponsiveness in allergen-sensitized mice. Allergy 63(4):438–446

    Article  CAS  PubMed  Google Scholar 

  • Kim EY et al (2008a) Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat Med 14(6):633–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ et al (2008b) The role of Nox4 in oxidative stress-induced MUC5AC overexpression in human airway epithelial cells. Am J Respir Cell Mol Biol 39(5):598–609

    Article  CAS  PubMed  Google Scholar 

  • Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4(3):181–189

    Article  CAS  PubMed  Google Scholar 

  • Lambrecht BN (2006) Alveolar macrophage in the driver’s seat. Immunity 24(4):366–368

    Article  CAS  PubMed  Google Scholar 

  • Lambrecht BN, Hammad H (2012) The airway epithelium in asthma. Nat Med 18(5):684–692

    Article  CAS  PubMed  Google Scholar 

  • Larche M, Robinson DS, Kay AB (2003) The role of T lymphocytes in the pathogenesis of asthma. J Allergy Clin Immunol 111(3):450–463. quiz 464

    Article  CAS  PubMed  Google Scholar 

  • Le Rossignol S, Ketheesan N, Haleagrahara N (2018) Redox-sensitive transcription factors play a significant role in the development of rheumatoid arthritis. Int Rev Immunol 37(3):129–143

    Article  PubMed  CAS  Google Scholar 

  • Lee HC, Ziegler SF (2007) Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airway epithelial cells is controlled by NFkappaB. Proc Natl Acad Sci U S A 104(3):914–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YC et al (2004) Blockade of airway hyperresponsiveness and inflammation in a murine model of asthma by a prodrug of cysteine, L-2-oxothiazolidine-4-carboxylic acid. FASEB J 18(15):1917–1919

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Song HJ, Park CS (2014) Role of inflammasome activation in development and exacerbation of asthma. Asia Pac Allergy 4(4):187–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Lei-Leston AC, Murphy AG, and Maloy KJ (2017) Epithelial Cell Inflammasomes in Intestinal Immunity and Inflammation. Front Immunol 8:1168.

    Google Scholar 

  • Li N, Nel AE (2006) Role of the Nrf2-mediated signaling pathway as a negative regulator of inflammation: implications for the impact of particulate pollutants on asthma. Antioxid Redox Signal 8(1-2):88–98

    Article  CAS  PubMed  Google Scholar 

  • Li YT et al (2009) Effects of intratracheal administration of nuclear factor-kappaB decoy oligodeoxynucleotides on long-term cigarette smoke-induced lung inflammation and pathology in mice. Respir Res 10:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M et al (2011) Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension. J Immunol 187(5):2711–2722

    Article  CAS  PubMed  Google Scholar 

  • Liu X et al (2016) The expression of NOX4 in smooth muscles of small airway correlates with the disease severity of COPD. Biomed Res Int 2016:17

    Google Scholar 

  • Liu T et al (2017) NF-κB signaling in inflammation. Signal Transduction Targeted Ther 2:17023

    Article  Google Scholar 

  • Lloreta J et al (1996) Selective diaphragmatic mitochondrial abnormalities in a patient with marked air flow obstruction. Ultrastruct Pathol 20(1):67–71

    Article  CAS  PubMed  Google Scholar 

  • Luhadia SK (2014) Steroid resistant asthma. J Assoc Physicians India 62(3 Suppl):38–40

    CAS  PubMed  Google Scholar 

  • Mabalirajan U et al (2008) Mitochondrial structural changes and dysfunction are associated with experimental allergic asthma. J Immunol 181(5):3540–3548

    Article  CAS  PubMed  Google Scholar 

  • MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350

    Article  CAS  PubMed  Google Scholar 

  • MacNee W (2001a) Oxidative stress and lung inflammation in airways disease. Eur J Pharmacol 429(1-3):195–207

    Article  CAS  PubMed  Google Scholar 

  • MacNee W (2001b) Oxidative stress and lung inflammation in airways disease. Eur J Pharmacol 429(1):195–207

    Article  CAS  PubMed  Google Scholar 

  • MacNee W (2005) Pathogenesis of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2(4):258–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeno T et al (2007) CD8+ T Cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J Immunol 178(12):8090–8096

    Article  CAS  PubMed  Google Scholar 

  • Mainardi T, Kapoor S, Bielory L (2009) Complementary and alternative medicine: herbs, phytochemicals and vitamins and their immunologic effects. J Allergy Clin Immunol 123(2):283–294. quiz 295-6

    Article  CAS  PubMed  Google Scholar 

  • Maj T et al (2017) Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat Immunol 18:1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malhotra D et al (2008) Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1. Am J Respir Crit Care Med 178(6):592–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malhotra D et al (2011a) Denitrosylation of HDAC2 by targeting Nrf2 restores glucocorticosteroid sensitivity in macrophages from COPD patients. J Clin Invest 121(11):4289–4302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malhotra D et al (2011b) Denitrosylation of HDAC2 by targeting Nrf2 restores glucocorticosteroid sensitivity in macrophages from COPD patients. J Clin Invest 121(11):4289–4302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marengo B et al (2016) Redox homeostasis and cellular antioxidant systems: crucial players in cancer growth and therapy. Oxidative Med Cell Longev 2016:6235641

    Article  CAS  Google Scholar 

  • Martinvalet D, Zhu P, Lieberman J (2005) Granzyme A induces caspase-independent mitochondrial damage, a required first step for apoptosis. Immunity 22(3):355–370

    Article  CAS  PubMed  Google Scholar 

  • Marwick JA et al (2007) Oxidative stress and steroid resistance in asthma and COPD: pharmacological manipulation of HDAC-2 as a therapeutic strategy. Expert Opin Ther Targets 11(6):745–755

    Article  CAS  PubMed  Google Scholar 

  • Mazor D et al (2006) Antioxidant properties of bucillamine: possible mode of action. Biochem Biophys Res Commun 349(3):1171–1175

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R, Janeway CA Jr (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9(1):4–9

    Article  CAS  PubMed  Google Scholar 

  • Mehta V et al (2008) Blood and sputum eosinophil levels in asthma and their relationship to sinus computed tomographic findings. Mayo Clin Proc 83(6):671–678

    Article  PubMed  Google Scholar 

  • Mercado N et al (2011) Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress. Biochem Biophys Res Commun 406(2):292–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer A et al (2013) Skeletal muscle mitochondrial dysfunction during chronic obstructive pulmonary disease: central actor and therapeutic target. Exp Physiol 98(6):1063–1078

    Article  CAS  PubMed  Google Scholar 

  • Michaeloudes C et al (2011) Transforming growth factor-beta and nuclear factor E2-related factor 2 regulate antioxidant responses in airway smooth muscle cells: role in asthma. Am J Respir Crit Care Med 184(8):894–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moinova HR, Mulcahy RT (1999) Up-regulation of the human gamma-glutamylcysteine synthetase regulatory subunit gene involves binding of Nrf-2 to an electrophile responsive element. Biochem Biophys Res Commun 261(3):661–668

    Article  CAS  PubMed  Google Scholar 

  • Moon K-A et al (2007) Allergen-induced CD11b+ CD11cint CCR3+ macrophages in the lung promote eosinophilic airway inflammation in a mouse asthma model. Int Immunol 19(12):1371–1381

    Article  CAS  PubMed  Google Scholar 

  • Moore WC et al (2007) Characterization of the severe asthma phenotype by the national heart, lung, and blood institute’s severe asthma research program. J Allergy Clin Immunol 119(2):405–413

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore WC et al (2014) Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis. J Allergy Clin Immunol 133(6):1557–1563. e5

    Article  PubMed  Google Scholar 

  • Morissette MC et al (2016) Role of BAFF in pulmonary autoantibody responses induced by chronic cigarette smoke exposure in mice. Phys Rep:4(24)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morrow JD, Roberts LJ (1997) The isoprostanes: unique bioactive products of lipid peroxidation. Prog Lipid Res 36(1):1–21

    Article  CAS  PubMed  Google Scholar 

  • Murahidy A et al (2005) Reduction is histone deacetylase expression and activity in smoking asthmatics: a mechanism of steroid resistance. Proc Am Thorac Soc 2(2)

    Google Scholar 

  • Murugan V, Peck MJ (2009) Signal transduction pathways linking the activation of alveolar macrophages with the recruitment of neutrophils to lungs in chronic obstructive pulmonary disease. Exp Lung Res 35(6):439–485

    Article  CAS  PubMed  Google Scholar 

  • Naura AS et al (2010) Requirement for inducible nitric oxide synthase in chronic allergen exposure-induced pulmonary fibrosis but not inflammation. J Immunol 185(5):3076–3085

    Article  CAS  PubMed  Google Scholar 

  • Nemat K, Yadollah S, Mahdi M (2009) Chronic Inflammation and oxidative stress as a major cause of age- related diseases and cancer. Recent Patents Inflamm Allergy Drug Discov 3(1):73–80

    Article  Google Scholar 

  • Oettgen HC, Geha RS (2001) IgE regulation and roles in asthma pathogenesis. J Allergy Clin Immunol 107(3):429–440

    Article  CAS  PubMed  Google Scholar 

  • Oliveira-Marques V et al (2009) Role of hydrogen peroxide in NF-kappaB activation: from inducer to modulator. Antioxid Redox Signal 11(9):2223–2243

    Article  CAS  PubMed  Google Scholar 

  • Ota K et al (2014) Potential involvement of IL-17F in asthma. J Immunol Res 2014:602846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oyinloye BE, Adenowo AF, Kappo AP (2015) Reactive oxygen species, apoptosis, antimicrobial peptides and human inflammatory diseases. Pharmaceuticals 8(2):151–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pace E et al (2008) Cigarette smoke increases Toll-like receptor 4 and modifies lipopolysaccharide-mediated responses in airway epithelial cells. Immunology 124(3):401–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padgett LE, Tse HM (2016) NADPH oxidase-derived superoxide provides a third signal for CD4 T cell effector responses. J Immunol 197(5):1733–1742

    Article  CAS  PubMed  Google Scholar 

  • Pall ML, Levine S (2015) Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors. Sheng Li Xue Bao 67(1):1–18

    CAS  PubMed  Google Scholar 

  • Panday A et al (2015) NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 12(1):5–23

    Article  CAS  PubMed  Google Scholar 

  • Pappas K et al (2013) The role of macrophages in obstructive airways disease: chronic obstructive pulmonary disease and asthma. Cytokine 64(3):613–625

    Article  CAS  PubMed  Google Scholar 

  • Patrizia C, Enrica B, Anna R (2014) Inflammation, DAMPs, tumor development, and progression: a vicious circle orchestrated by redox signaling. Antioxid Redox Signal 20(7):1086–1097

    Article  CAS  Google Scholar 

  • Pelaia G et al (2015a) Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma. Mediat Inflamm 2015:879783

    Article  CAS  Google Scholar 

  • Pelaia G et al (2015b) Cellular Mechanisms Underlying Eosinophilic and Neutrophilic Airway Inflammation in Asthma. Mediat Inflamm 2015:8

    Article  CAS  Google Scholar 

  • Possa SS et al (2013a) Eosinophilic inflammation in allergic asthma. Front Pharmacol 4:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Possa SS et al (2013b) Eosinophilic inflammation in allergic asthma. Front Pharmacol 4:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poynter ME, Irvin CG, Janssen-Heininger YMW (2002) Rapid activation of nuclear factor-κB in airway epithelium in a murine model of allergic airway inflammation. Am J Pathol 160(4):1325–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poynter ME et al (2004) NF-kappa B activation in airways modulates allergic inflammation but not hyperresponsiveness. J Immunol 173(11):7003–7009

    Article  CAS  PubMed  Google Scholar 

  • Prefontaine D, Hamid Q (2007) Airway epithelial cells in asthma. J Allergy Clin Immunol 120(6):1475–1478

    Article  PubMed  Google Scholar 

  • Prieto J et al (2000) Increased interleukin-13 mRNA expression in bronchoalveolar lavage cells of atopic patients with mild asthma after repeated low-dose allergen provocations. Respir Med 94(8):806–814

    Article  CAS  PubMed  Google Scholar 

  • Pryor WA, Prier DG, Church DF (1983) Electron-spin resonance study of mainstream and sidestream cigarette smoke: nature of the free radicals in gas-phase smoke and in cigarette tar. Environ Health Perspect 47:345–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rada B, Leto TL (2008) Oxidative innate immune defenses by Nox/Duox family NADPH Oxidases. Contrib Microbiol 15:164–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rada B et al (2014) Histamine stimulates hydrogen peroxide production by bronchial epithelial cells via histamine H1 receptor and dual oxidase. Am J Respir Cell Mol Biol 50(1):125–134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman I, MacNee W (1998) Role of transcription factors in inflammatory lung diseases. Thorax 53(7):601–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman I et al (1996) Systemic oxidative stress in asthma, COPD, and smokers. Am J Respir Crit Care Med 154(4 Pt 1):1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Rajendrasozhan S et al (2010) Anti-inflammatory effect of a selective IκB kinase-beta inhibitor in rat lung in response to LPS and cigarette smoke. Pulm Pharmacol Ther 23(3):172–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangasamy T et al (2005) Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J Exp Med 202(1):47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao RK et al (2002) Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem J 368(Pt 2):471–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastrick JM et al (2013) Cigarette smoke induced airway inflammation is independent of NF-kappaB signalling. PLoS One 8(1):e54128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy PH (2011) Mitochondrial dysfunction and oxidative stress in asthma: implications for mitochondria-targeted antioxidant therapeutics. Pharmaceuticals 4(3):429–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richard Russell FH, Artigas MS, Esteve-Codino A, Thun GA, Newby C, Wain LV, Tobin MD, Heath S, Gut I, Subramanian D, Gupta S, Parr D, Singh D, Ziegler-Heitbrock L, Brightling C (2016) Bronchial epithelial gene expression of NOX isoforms are related to important clinical characteristics in COPD. Eur Respir J 48:PA4012

    Google Scholar 

  • Riedl MA, Nel AE (2008) Importance of oxidative stress in the pathogenesis and treatment of asthma. Curr Opin Allergy Clin Immunol 8(1):49–56

    Article  CAS  PubMed  Google Scholar 

  • Ronchi MC et al (1997) Do sputum eosinophils and ECP relate to the severity of asthma? Eur Respir J 10(8):1809–1813

    Article  CAS  PubMed  Google Scholar 

  • Saetta M et al (1999) CD8+ve cells in the lungs of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160(2):711–717

    Article  CAS  PubMed  Google Scholar 

  • Saetta M et al (2001) Cellular and structural bases of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 163(6):1304–1309

    Article  CAS  PubMed  Google Scholar 

  • Sahin U et al (2001) Lipid peroxidation and glutathione peroxidase activity in chronic obstructive pulmonary disease exacerbation: prognostic value of malondialdehyde. J Basic Clin Physiol Pharmacol 12(1):59–68

    Article  CAS  PubMed  Google Scholar 

  • Sahiner UM et al (2011) Oxidative stress in asthma. World Allergy Organ J 4(10):151–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saldanha JF et al (2013) Resveratrol: why is it a promising therapy for chronic kidney disease patients? Oxidative Med Cell Longev 2013:963217

    Article  CAS  Google Scholar 

  • Salvi S (2014) Tobacco smoking and environmental risk factors for chronic obstructive pulmonary disease. Clin Chest Med 35(1):17–27

    Article  PubMed  Google Scholar 

  • Schewe T (2002) 15-lipoxygenase-1: a prooxidant enzyme. Biol Chem 383(3-4):365–374

    Article  CAS  PubMed  Google Scholar 

  • Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol: CB 24(10):R453–R462

    Article  CAS  PubMed  Google Scholar 

  • Schuliga M (2015) NF-kappaB signaling in chronic inflammatory airway disease. Biomolecules 5(3):1266–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seys LJ et al (2015) Role of B Cell-activating factor in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 192(6):706–718

    Article  CAS  PubMed  Google Scholar 

  • Shao MXG, Nadel JA (2005) Neutrophil elastase induces MUC5AC mucin production in human airway epithelial cells via a cascade involving protein kinase C, reactive oxygen species, and TNF-α-converting enzyme. J Immunol 175(6):4009–4016

    Article  CAS  PubMed  Google Scholar 

  • Sharquie IK et al (2013) An investigation into IgE-facilitated allergen recognition and presentation by human dendritic cells. BMC Immunol 14:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stone DJR, Yang S (2006a) Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal 8(3-4):243–270

    Article  CAS  PubMed  Google Scholar 

  • Stone JR, Yang S (2006b) Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal 8(3-4):243–270

    Article  CAS  PubMed  Google Scholar 

  • Su Y-C et al (2008a) Granulocyte-macrophage colony-stimulating factor is required for bronchial eosinophilia in a murine model of allergic airway inflammation. J Immunol 180(4):2600–2607

    Article  CAS  PubMed  Google Scholar 

  • Su YC et al (2008b) Granulocyte-macrophage colony-stimulating factor is required for bronchial eosinophilia in a murine model of allergic airway inflammation. J Immunol 180(4):2600–2607

    Article  CAS  PubMed  Google Scholar 

  • Sureshbabu A, Bhandari V (2013) Targeting mitochondrial dysfunction in lung diseases: emphasis on mitophagy. Front Physiol 4:384

    Article  PubMed  PubMed Central  Google Scholar 

  • Sussan TE et al (2015) Nrf2 reduces allergic asthma in mice through enhanced airway epithelial cytoprotective function. Am J Phys Lung Cell Mol Phys 309(1):L27–L36

    CAS  Google Scholar 

  • Sutcliffe A et al (2012a) Increased nicotinamide adenine dinucleotide phosphate oxidase 4 expression mediates intrinsic airway smooth muscle hypercontractility in asthma. Am J Respir Crit Care Med 185(3):267–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutcliffe A et al (2012b) Increased nicotinamide adenine dinucleotide phosphate oxidase 4 expression mediates intrinsic airway smooth muscle hypercontractility in asthma. Am J Respir Crit Care Med 185(3):267–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M et al (2008) Down-regulated NF-E2-related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 39(6):673–682

    Article  CAS  PubMed  Google Scholar 

  • Szulakowski P et al (2006) The effect of smoking on the transcriptional regulation of lung inflammation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 174(1):41–50

    Article  CAS  PubMed  Google Scholar 

  • Takai T (2012) TSLP expression: cellular sources, triggers, and regulatory mechanisms. Allergol Int 61(1):3–17

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S et al (2006) Monocyte chemoattractant protein 1 and macrophage cyclooxygenase 2 expression in colonic adenoma. Gut 55(1):54–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang C et al (1998) Alveolar macrophages from atopic asthmatics, but not atopic nonasthmatics, enhance interleukin-5 production by CD4 + T cells. Am J Respir Crit Care Med 157(4):1120–1126

    Article  CAS  PubMed  Google Scholar 

  • Thimmulappa RK et al (2002) Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62(18):5196–5203

    CAS  PubMed  Google Scholar 

  • To Y et al (2010) Targeting phosphoinositide-3-Kinase-δ with theophylline reverses corticosteroid insensitivity in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 182(7):897–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todate A et al (2000) Increased numbers of dendritic cells in the bronchiolar tissues of diffuse panbronchiolitis. Am J Respir Crit Care Med 162(1):148–153

    Article  CAS  PubMed  Google Scholar 

  • Trocme C et al (2015) Macrophage-specific NOX2 contributes to the development of lung emphysema through modulation of SIRT1/MMP-9 pathways. J Pathol 235(1):65–78

    Article  CAS  PubMed  Google Scholar 

  • Tully JE et al (2013) Epithelial NF-kappaB orchestrates house dust mite-induced airway inflammation, hyperresponsiveness, and fibrotic remodeling. J Immunol 191(12):5811–5821

    Article  CAS  PubMed  Google Scholar 

  • Upham JW, Xi Y (2016) Dendritic cells in human lung disease: recent advances. Chest

    Google Scholar 

  • Vaidyanathan A, Damodar KS (2015) Increased metabolic activity of neutrophils in patients with chronic obstructive pulmonary disease. Lung India 32(6):589–592

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Pottelberge GR et al (2009) The role of dendritic cells in the pathogenesis of COPD: liaison officers in the front line. COPD 6(4):284–290

    Article  PubMed  Google Scholar 

  • Van Pottelberge GR et al (2010) Selective accumulation of langerhans-type dendritic cells in small airways of patients with COPD. Respir Res 11:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wallace AM et al (2008) Matrix metalloproteinase expression by human alveolar macrophages in relation to emphysema. COPD: J Chron Obstruct Pulmon Dis 5(1):13–23

    Article  Google Scholar 

  • Wan J, Diaz-Sanchez D (2006) Phase II enzymes induction blocks the enhanced IgE production in B cells by diesel exhaust particles. J Immunol 177(5):3477–3483

    Article  CAS  PubMed  Google Scholar 

  • Wan WY et al (2016) NADPH oxidase-4 overexpression is associated with epithelial ciliary dysfunction in neutrophilic asthma. Chest 149(6):1445–1459

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang P et al (2011) Radical-containing particles activate dendritic cells and enhance Th17 inflammation in a mouse model of asthma. Am J Respir Cell Mol Biol 45(5):977–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams MS, Henkart PA (2005) Do cytotoxic lymphocytes kill via reactive oxygen species? Immunity 22(3):272–274

    Article  CAS  PubMed  Google Scholar 

  • Williams MA et al (2008) Disruption of the transcription factor Nrf2 promotes pro-oxidative dendritic cells that stimulate Th2-like immunoresponsiveness upon activation by ambient particulate matter. J Immunol 181(7):4545–4559

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Chen Y, Hazen SL (1999) Eosinophil peroxidase nitrates protein tyrosyl residues: implications for oxidative damage by nitrating intermediates in eosinophilic inflammatory disorders. J Biol Chem 274(36):25933–25944

    Article  CAS  PubMed  Google Scholar 

  • Xu W et al (2012) Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation. PLoS One 7(7):e40314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SR et al (2009) RelB is differentially regulated by IkappaB Kinase-alpha in B cells and mouse lung by cigarette smoke. Am J Respir Cell Mol Biol 40(2):147–158

    Article  CAS  PubMed  Google Scholar 

  • Yang M et al (2012) Emerging roles of pulmonary macrophages in driving the development of severe asthma. J Leukoc Biol 91(4):557–569

    Article  CAS  PubMed  Google Scholar 

  • Yue L, Yao H (2016) Mitochondrial dysfunction in inflammatory responses and cellular senescence: pathogenesis and pharmacological targets for chronic lung diseases. Br J Pharmacol 173(15):2305–2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng H et al (2018) Polydatin attenuates reactive oxygen species-induced airway remodeling by promoting Nrf2-mediated antioxidant signaling in asthma mouse model. Life Sci

    Google Scholar 

  • Zhao H et al (2009) DNA damage response induced by tobacco smoke in normal human bronchial epithelial and A549 pulmonary adenocarcinoma cells assessed by laser scanning cytometry. Cytometry A 75(10):840–847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amarjit Singh Naura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sethi, G.S., Dharwal, V., Naura, A.S. (2019). Immunological Basis of Oxidative Stress-Induced Lung Inflammation in Asthma and COPD. In: Chakraborti, S., Chakraborti, T., Das, S., Chattopadhyay, D. (eds) Oxidative Stress in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8413-4_11

Download citation

Publish with us

Policies and ethics