Skip to main content

Microbial Degradation of Nitroaromatic Pesticide: Pendimethalin

  • Chapter
  • First Online:
Microbial Interventions in Agriculture and Environment

Abstract

Herbicides are most frequently employed in large volume among available pesticides to control weed, of which only meager amount reaches the target pest and remaining accumulates in the environment posing a large-scale threat to crops, soil microbes, and aquatic and human lives. Existing strategies are cumbersome, ineffective, and unreliable and produce toxic intermediates. Hence, effective and efficient strategies are now being developed to clean the herbicides, especially pendimethalin (PND) in an economically and environment-friendly manner. Therefore, this review attempts to pool all the published literature to consolidate biotic as well as abiotic degradation of PND and enlist the metabolic products of the pathway formed during the PND biodegradation in different microbial systems. The overview of microbial degradation of PND may be useful to design economically viable strategy to clean up soil, sediments, and water contaminated with PND and related nitroaromatics under edaphic/hostile conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Algadir M, Sabah Elkhier M, Idris O (2011) Changes of fish liver (Tilapia nilotica) made by herbicide (Pendimethalin). J Appl Biosci 43:2942–2946

    Google Scholar 

  • Ahemad M, Khan MS (2011) Ecotoxicological assessment of pesticides towards the plant growth promoting activities of lentil (Lens esculentus)-specific Rhizobium sp. strain MRL3. Ecotoxicology 20:661–669

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Zaidi A, Khan MS, Oves M (2009) Factors affecting the variation of microbial communities in different agro-ecosystems. In: Microbial strategies for crop improvement. Springer, Berlin, p 301–324

    Chapter  Google Scholar 

  • Ahmad I, Ahmad A, Ahmad M (2016) Binding properties of pendimethalin herbicide to DNA: multispectroscopic and molecular docking approaches. Phys Chem Chem Phys 18:6476–6485

    Article  CAS  PubMed  Google Scholar 

  • Almazán-Sánchez PT, Cotillas S, Saez C, Solache-Rios MJ, Martínez-Miranda V, Canizares P, Linares-Hernández I, Rodrigo MA (2017) Removal of pendimethalin from soil washing effluents using electrolytic and electro-irradiated technologies based on diamond anodes. Appl Catal B Environ 213:190–197

    Article  CAS  Google Scholar 

  • Ayub SM, Garg SK, Garg KM (1997) Sub-acute toxicity studies on pendimethalin in rats. Indian J Pharm 29:322

    Google Scholar 

  • Barua AS, Saha J, Chaudhuri S, Chowdhury A, Adityachaudhury N (1990) Degradation of pendimethalin by soil fungi. Pestic Sci 29:419–425

    Article  CAS  Google Scholar 

  • Belal EB, Hassan NE (2013) Dissipation of pendimethalin by Bacillus megaterium. Mansoura J Plant Prot Pathol 5:463–472

    Google Scholar 

  • Belal EB, Nagwa ME (2014) Biodegradation of pendimethalin residues by P. chrysosporium in aquatic system and soils. J Biol Chem Environ Sci 9:383–400

    Google Scholar 

  • Choudhury PP, Singh R, Ghosh D, Sharma AR (2016) In herbicide recomandation for various crops. Herbicide use in Indian Agriculture ICAR – Directorate of Weed Research, Jabalpur, Bulletin No.22: 25–48

    Google Scholar 

  • Diez MC (2010) Biological aspects involved in the degradation of organic pollutants. J Soil Sci Plant Nutr 10(3):244–267

    Google Scholar 

  • Dureja P, Walia S (1989) Photodecomposition of pendimethalin. Pestic Sci 25:105–114

    Article  CAS  Google Scholar 

  • El-Awadi ME, Hassan EA (2011) Improving growth and productivity of fennel plant exposed to pendimethalin herbicide: stress–recovery treatments. Nat Sci 9:97–108

    Google Scholar 

  • El-Sharkawy NI, Reda RM, El-Araby IE (2011) Assessment of stomp®(Pendimethalin) toxicity on Oreochromis niloticus. J Am Sci 7:568–576

    Google Scholar 

  • Engebretson J, Hall G, Hengel M, Shibamoto T (2001) Analysis of pendimethalin residues in fruit, nuts, vegetables, grass, and mint by gas chromatography. J Agric Food Chem 49:2198–2206

    Article  CAS  PubMed  Google Scholar 

  • European Community (2003) Review report for the active substance pendimethalin, Report 7477/VI/98-final. European Comission, Health and Consumer Protection Directorate General, Brussels, pp 1–43

    Google Scholar 

  • Fennell BJ, Naughton JA, Dempsey E, Bell A (2006) Cellular and molecular actions of dinitroaniline and phosphorothioamidate herbicides on Plasmodium falciparum: tubulin as a specific antimalarial target. Mol Biochem Parasitol 145:226–238

    Article  CAS  PubMed  Google Scholar 

  • Gianessi LP (2013) The increasing importance of herbicides in worldwide crop production. Pest Manag Sci 69:1099–1105

    Article  CAS  PubMed  Google Scholar 

  • Gomathi Devi LN, Krishnamurthy G (2008) Photocatalytic degradation of the herbicide pendimethalin using nanoparticles of BaTiO3/TiO2 prepared by gel to crystalline conversion method: a kinetic approach. J Environ Sci Health B 43:553–561

    Article  PubMed  CAS  Google Scholar 

  • Gong W, Liu X, Xia S, Liang B, Zhang W (2016) Abiotic reduction of trifluralin and pendimethalin by sulfides in black-carbon-amended coastal sediments. J Hazard Mater 310:125–134

    Article  CAS  Google Scholar 

  • Ishag AESA, Abdelbagi AO, Hammad AMA, Elsheikh EAE, Elsaid OE, Hur JH (2017) Biodegradation of endosulfan and pendimethalin by three strains of bacteria isolated from pesticides-polluted soils in the Sudan. Appl Biol Chem 60:287–297

    Article  Google Scholar 

  • Jiang J, Li S (2018) Microbial degradation of chemical pesticides and bioremediation of pesticide-contaminated sites in China. In: Twenty years of research and development on soil pollution and remediation in China. Springer, Singapore, p 655–670

    Chapter  Google Scholar 

  • Jogdand SN (2000) Biotechnology for hazardous waste management. In: Environmental biotechnology. Himalaya Publication House, New-Delhi, p 121–140

    Google Scholar 

  • Juhler RK, Sorensen SR, Larsen L (2001) Analysing transformation products of herbicide residues in environmental samples. Water Res 35:1371–1378

    Article  CAS  PubMed  Google Scholar 

  • Kanekar P, Daupure P, Sarnaik S (2003) Biodegradation of nitroexplosive Indian. J Exp Biol 41:991–1001

    CAS  Google Scholar 

  • Keese RJ, Camper ND, Whitwell T, Riley MB, Wilson PC (1994) Herbicide runoff from ornamental container nurseries. J Environ Qual 23:320–324

    Article  CAS  Google Scholar 

  • Keum YS, Li QX (2004) Reduction of nitroaromatic pesticides with zero-valent iron. Chemosphere 54:255–263

    Article  CAS  PubMed  Google Scholar 

  • Kidd H, James DRE (1991) The agrochemicals handbook. The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  • Kole RK, Saha J, Pal S, Chaudhuri S, Chowdhury A (1994) Bacterial degradation of the herbicide pendimethalin and activity evaluation of its metabolites. Bull Environ Contam Toxicol 52:779–786

    Article  CAS  PubMed  Google Scholar 

  • Laemmli CM, Leveau JH, Zehnder AJ, van der Meer JR (2000) Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134 (pJP4). J Bacteriol 182:4165–4172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Megadi VB, Tallur PN, Hoskeri RS, Mulla SI, Ninnekar HZ (2010) Biodegradation of pendimethalin by Bacillus circulans. Indian J Biotechnol 9:173–177

    CAS  Google Scholar 

  • More VS, Tallur PN, Niyonzima FN, More SS (2015) Enhanced degradation of pendimethalin by immobilized cells of Bacillus lehensis XJU. 3 Biotech 5:967–974

    Article  PubMed  PubMed Central  Google Scholar 

  • Moza PN, Hustert K, Pal S, Sukul P (1992) Photocatalytic decomposition of pendimethalin and alachlor. Chemosphere 25(11):1675–1682

    Article  CAS  Google Scholar 

  • Ni HY, Wang F, Li N, Yao L, Dai C, He Q, He J, Hong Q (2016a) The nitroreductase PNR is responsible for the initial step of pendimethalin degradation in Bacillus subtilis Y3. Appl Environ Microbiol 82:7052–7062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni H, Yao L, Li N, Cao Q, Dai C, Zhang J, He Q, He J (2016b) Biodegradation of pendimethalin by Bacillus subtilis Y3. J Environ Sci 4:121–127

    Article  Google Scholar 

  • Ni H, Li N, Qiu J, Chen Q, He J (2018) Biodegradation of pendimethalin by Paracoccus sp. P13. Curr Microbiol 75:1077–1083

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E, Olvera-Velona A, Folch-Mallol JL (2011) Pesticides in the environment: impacts and its biodegradation as a strategy for residues treatment. In: Pesticides-formulations, effects, fate. InTech, China, p 551–574

    Google Scholar 

  • Pandit GK, Pal S, Das AK (1995) Photocatalytic degradation of pendimethalin in the presence of titanium dioxide. J Agric Food Chem 43:171–174

    Article  CAS  Google Scholar 

  • Parte SG, Mohekar AD, Kharat AS (2017) Microbial degradation of pesticide: a review. Afr J Microbiol Res 11:992–1012

    Article  CAS  Google Scholar 

  • Patel S, Bajpayee M, Pandey AK, Parmar D, Dhawan A (2007) In vitro induction of cytotoxicity and DNA strand breaks in CHO cells exposed to cypermethrin, pendimethalin and dichlorvos. Toxicol in Vitro 21:1409–1418

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D (1995) Amounts of pesticides reaching target pests: environmental impacts and ethics. J Agric Environ Ethics 8:17–29

    Article  Google Scholar 

  • Pimentel D, Wilson C, McCullum C, Huang R, Dwen P, Flack J, Cliff B (1997) Economic and environmental benefits of biodiversity. BioScience 47(11):747–757

    Article  Google Scholar 

  • Pinto AP, Serrano C, Pires T, Mestrinho E, Dias L, Teixeira DM, Caldeira AT (2012) Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures. Sci Total Environ 435:402–410

    Article  PubMed  CAS  Google Scholar 

  • Promkaew N, Soontornchainaksaeng P, Jampatong S, Rojanavipart P (2010) Toxicity and genotoxicity of pendimethalin in maize and onion. Kasetsart J-Nat Sci 44:1010–1015

    Google Scholar 

  • Richardson ML, Gangolli S (eds) (1992) The dictionary of substances and their effects. Royal Society of Chemistry, London. (1)

    Google Scholar 

  • Ritter L, Solomon KR, Forget J, Stemeroff M, O’Leary C (1995) Persistent organic pollutants: an assessment report on: DDT-aldrin-dieldrin-endrin-chlordane-heptachlor-hexachlorobenzene-mirextoxaphene-polychlorinated biphenyls-dioxins and furans 1995. Inter-Organization Programme for the Sound Management of Chemicals (IOMC), Geneva

    Google Scholar 

  • Roca E, D’Errico E, Izzo A, Strumia S, Esposito A, Fiorentino A (2009) In vitro saprotrophic basidiomycetes tolerance to pendimethalin. Int Biodeterior Biodegrad 63:182–186

    Article  CAS  Google Scholar 

  • Sakata M (2005) Organophosphorous pesticides. In: Suzuki O, Watanabe K (eds) Drugs and poisons in humans. Springer, Verlag, New York, pp 535–544

    Chapter  Google Scholar 

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248

    Article  CAS  PubMed  Google Scholar 

  • Scheunert I, Mansour M, Doerfler U, Schroll R (1993) Fate of pendimethalin, carbofuran and diazinon under abiotic and biotic conditions. Sci Total Environ 132:361–369

    Article  CAS  Google Scholar 

  • Shaer IBS, Abdelbagi AO, Elmustafa EA, Ahmed SAI, Osama GE (2013) Biodegradation of pendimethalin by three strains of bacteria isolated from pesticides polluted soils. Univ Khartoum J Agric Sci 21:233–252

    Google Scholar 

  • Shroff R (2000) Chairman address in pesticide information. Annual Issue. Pesticide Association of India Publication, New Delhi

    Google Scholar 

  • Singh SB, Kulshrestha G (1991) Microbial degradation of pendimethalin. J Environ Sci Health B 26:309–321

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Singh K (2014) Microbial degradation of herbicides. Crit Rev Microbiol 42:245–261

    PubMed  Google Scholar 

  • Strandberg M, Scott-Fordsmand JJ (2004) Effects of pendimethalin at lower trophic levels-a review. Ecotoxicol Environ Saf 57:190–201

    Article  CAS  PubMed  Google Scholar 

  • Swarcewicz MK, Gregorczyk A (2012) The effects of pesticide mixtures on degradation of pendimethalin in soils. Environ Monit Assess 184(5):3077–3084

    Article  CAS  PubMed  Google Scholar 

  • Timmis KN, Steffan RJ, Unterman R (1994) Designing microorganisms for the treatment of toxic wastes. Annu Rev Microbiol 48:525–557

    Article  CAS  PubMed  Google Scholar 

  • Tsiropoulos NG, Miliadis GE (1998) Field persistence studies on pendimethalin residues in onions and soil after herbicide postemergence application in onion cultivation. J Agric Food Chem 46:291–295

    Article  CAS  PubMed  Google Scholar 

  • Vighi M, Matthies M, Solomon KR (2017) Critical assessment of pendimethalin in terms of persistence, bioaccumulation, toxicity, and potential for long-range transport. J Toxicol Environ Health B 20:1–21

    Article  CAS  Google Scholar 

  • Walker A, Bond W (1977) Persistence of the herbicide AC 92,553, N-(1-ethylpropyl) 2, 6-dinitro-3, 4-xylidine, in soils. Pestic Sci 8:359–365

    Article  CAS  Google Scholar 

  • Zheng SQ, Cooper JF (1996) Adsorption, desorption, and degradation of three pesticides in different soils. Arch Environ Contam Toxicol 30:15–20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jape, P., Maheshwari, V., Chaudhari, A. (2019). Microbial Degradation of Nitroaromatic Pesticide: Pendimethalin. In: Singh, D., Gupta, V., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-8391-5_20

Download citation

Publish with us

Policies and ethics