Skip to main content

A Modelling of Stereo Matching Algorithm for Machine Vision Application

  • Conference paper
  • First Online:
Advances in Material Sciences and Engineering

Abstract

Stereo matching algorithm is a part of machine vision research area. The most challenging issue for stereo matching algorithm is to get an accurate corresponding point on the low texture region. Hence, this article proposes an algorithm utilizing the Sum of Absolute Differences (SAD), gradient matching and Bilateral Filter (BF) to increase the accuracy on this region. The combination of SAD with Red, Green and Blue (RGB) channels differences and gradient matching could improve the matching accuracy on the low texture region. Furthermore, the use of edge preserving filter such as BF that is capable to refine and remove the remaining noise on the final result. This filter is robust against high contrast and brightness. Based on the experimental analysis using standard benchmarking dataset from the Middlebury, the proposed work in this article achieves good accuracy on the low texture region. The comparison is also conducted with some established methods where the proposed framework performs much better.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vedamurthy I, Knill DC, Huang SJ et al (2016) Recovering stereo vision by squashing virtual bugs in a virtual reality environment. Phil Trans R Soc B 371(1697):20150264

    Article  Google Scholar 

  2. Hamzah RA, Ibrahim H, Hassan AH (2016) Stereo matching algorithm for 3D surface reconstruction based on triangulation principle. In: International conference on information technology, information systems and electrical engineering (ICITISEE), pp 119–124

    Google Scholar 

  3. Winarno E, Harjoko A, Arymurthy AM (2016) Face recognition based on symmetrical half-join method using stereo vision camera. Int J Electr Comput Eng 6(6):2818

    Google Scholar 

  4. Hasan AH, Hamzah RA, Johar MH (2009) Range estimation in disparity mapping for navigation of stereo vision autonomous vehicle using curve fitting tool. IJVIPNS 9(9):5–9

    Google Scholar 

  5. Budiharto W, Santoso A, Purwanto D et al (2011) Multiple moving obstacles avoidance of service robot using stereo vision. TELKOMNIKA (Telecommun Comput Electron Control 9(3):433–444

    Article  Google Scholar 

  6. Xi HX, Cui W (2013) Wide baseline matching using support vector regression. TELKOMNIKA (Telecommun Comput Electron Control) 11(3):597–602

    Article  Google Scholar 

  7. Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vision 47(1–3):7–42

    Article  Google Scholar 

  8. Yang Q (2012) A non-local cost aggregation method for stereo matching. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1402–1409

    Google Scholar 

  9. Hosni A, Rhemann C, Bleyer M et al (2013) Fast cost-volume filtering for visual correspondence and beyond. IEEE Trans Pattern Anal Mach Intell 35(2):504–511

    Article  Google Scholar 

  10. Hamzah RA, Kadmin AF, Hamid MS et al (2018) Improvement of stereo matching algorithm for 3D surface reconstruction. Sig Process Image Commun 65:165–172

    Article  Google Scholar 

  11. Richardt C, Kim H, Valgaerts L, Theobalt C et al (2016) Dense wide-baseline scene flow from two handheld video cameras. In: Fourth international conference on 3D vision (3DV), pp 276–285

    Google Scholar 

  12. Liang Q, Yang Y, Liu B (2014) Stereo matching algorithm based on ground control points using graph cut. In: International congress on image and signal processing (CISP), pp 503–508

    Google Scholar 

  13. Yang Q, Ji P, Li D et al (2014) Fast stereo matching using adaptive guided filtering. Image Vis Comput 32(3):202–211

    Article  Google Scholar 

  14. Kowalczuk J, Psota ET, Perez LC (2013) Real-time stereo matching on CUDA using an iterative refinement method for adaptive support-weight correspondences. IEEE Trans Circuits Syst Video Technol 23(1):94–104

    Article  Google Scholar 

  15. Zbontar J, LeCun Y (2015) Computing the stereo matching cost with a convolutional neural network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1592–1599

    Google Scholar 

  16. Hirschmüller H, Innocent PR, Garibaldi J (2002) Real-time correlation-based stereo vision with reduced border errors. Int J Comput Vision 47(1–3):229–246

    Article  Google Scholar 

  17. Bricola JC, Bilodeau M, Beucher S (2016) Morphological processing of stereoscopic image superimpositions for disparity map estimation. Hal-01330139 1–17

    Google Scholar 

  18. Ma N, Men Y, Men C (2016) Accurate dense stereo matching based on image segmentation using an adaptive multi-cost approach. Symmetry 8(12):159

    Article  MathSciNet  Google Scholar 

  19. Kitagawa M, Shimizu I, Sara R (2017) High accuracy local stereo matching using DoG scale map. In: IAPR international conference on machine vision applications (MVA), pp 258–261

    Google Scholar 

  20. Hamzah RA, Kadmin AF, Ghani SF et al (2017) Disparity refinement process based on RANSAC plane fitting for machine vision applications. J Fundam Appl Sci 9(4S):226–237

    Article  Google Scholar 

  21. Wu SS, Tsai CH, Chen LG (2016) Efficient hardware architecture for large disparity range stereo matching based on belief propagation. In: IEEE international workshop on signal processing systems (SiPS), pp 236–241

    Google Scholar 

  22. Hasan AH, Hamzah RA, Johar MH (2009) Disparity mapping for navigation of stereo vision autonomous guided vehicle. In: International conference of soft computing and pattern recognition, pp 575–579

    Google Scholar 

  23. Hamzah RA, Rahim RA (2010) Depth evaluation in selected region of disparity mapping for navigation of stereo vision mobile robot. In: IEEE symposium on industrial electronics & applications (ISIEA), pp 551–555

    Google Scholar 

  24. Hamzah RA, Ghani SF, Din A (2012) Visualization of image distortion on camera calibration for stereo vision application. In: International conference on control system, computing and engineering (ICCSCE), pp 28–33

    Google Scholar 

  25. Daniel S, Richard S (2018) Middlebury Stereo evaluation—version 3. Accessed Sept 2018. http://vision.middlebury.edu/stereo/eval/references

  26. Einecke N, Eggert J (2013) Anisotropic median filtering for stereo disparity map refinement. In VISAPP, pp 189–198

    Google Scholar 

  27. Geiger A, Roser M, Urtasun R (2010) Efficient large-scale stereo matching. In: Asian conference on computer vision, pp 25–38

    Chapter  Google Scholar 

  28. Zhang K, Li J, Li Y et al (2012) Binary stereo matching. In: International conference on pattern recognition (ICPR), pp 356–359

    Google Scholar 

  29. Menze M, Geiger A (2015) Object scene flow for autonomous vehicles. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3061–3070

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Universiti Teknikal Malaysia Melaka with the grant number (PJP/2018/FTK(13C)/S01632).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rostam Affendi Hamzah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamzah, R.A. et al. (2020). A Modelling of Stereo Matching Algorithm for Machine Vision Application. In: Awang, M., Emamian, S., Yusof, F. (eds) Advances in Material Sciences and Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-8297-0_52

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8297-0_52

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8296-3

  • Online ISBN: 978-981-13-8297-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics