Skip to main content

A Decennary Survey on Artificial Intelligence Methods for Image Segmentation

  • Conference paper
  • First Online:
Advanced Engineering Optimization Through Intelligent Techniques

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 949))

Abstract

The technique of breaking down an image into categorial regions containing each pixel with similar attributes is termed as image segmentation (IS). It is the preliminary step of image processing. This technique can be used for both grey-scale and colour images. This technique is applied everywhere, even in our personal Smartphone’s camera while capturing pictures. And image segmentation is the most innovative problem under the computer vision domain. This paper provides various techniques that are available in the field of image segmentation and their pros and cons. A lot of research is being done by applying artificial intelligence techniques for the image segmentation problems. In this paper, an overview of artificial intelligence algorithm techniques such as machine learning, deep learning, meta-heuristics approaches that was used in the past decade has been discussed, and a comparative study about the same is carried out and the problems and recommendations for selection of appropriate method for image segmentation have been dealt with.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Techopedia. http://www.techopedia/computer-vision

  2. Liao, W., Rohr, K., Kang, C.-K., Cho, Z.-H., Stefan, W.: Automatic human brain vessel segmentation from 3D 7 tesla MRA images using fast marching with anisotropic directional prior (2012). https://doi.org/10.1109/isbi.2012.6235761

  3. Kumar, V.B., Janani, K., Priya, M.N.: A survey on automatic detection of hard exudates in diabetic retinopathy (2017). https://doi.org/10.1109/icisc.2017.8068604

  4. Kumar, V.B., Divya, S.: A study on optic disc localization methods in retinal images (In press)

    Google Scholar 

  5. Cheng, Y.: Mean shift, mode seeking, and clustering (1995). https://doi.org/10.1109/34.400568

    Article  Google Scholar 

  6. Liu, G., Zhang, Y., Wang, A.: Incorporating adaptive local information into fuzzy clustering for image segmentation. IEEE Trans. Image Process. 24(11), 3990–4000 (2015). https://doi.org/10.1109/tip.2015.2456505

    Article  MathSciNet  MATH  Google Scholar 

  7. Raju, D.R.P., Neelima, G.: Image segmentation by using histogram thresholding (2012). doi: ijcset2012020103

    Google Scholar 

  8. Mushrif, M.M., Ray, A.K.: A-IFS Histon based multithresholding algorithm for color image segmentation. IEEE Signal Process. Lett. 16(3), 168–171 (2009). https://doi.org/10.1109/lsp.2008.2010820

    Article  Google Scholar 

  9. Pizer, S.M., Amburn, P.E., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., Romeny, B.H., Zimmerman, J.B., Zuiderveld.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 39(3), 355–368 (1987). https://doi.org/10.1016/s0734-189x(87)80186-x

    Article  Google Scholar 

  10. Kuan, Y.-H., Kuo, C.-M., Yang, N.-C.: Color-based image salient region segmentation using novel region merging strategy. IEEE Trans. Multimedia 10(5), 832–845 (2008). https://doi.org/10.1109/tmm.2008.922853

    Article  Google Scholar 

  11. Preetha, M.M.S.J., Suresh, P.L., Bosco, J.M.: Image segmentation using seeded region growing. In: 2012 International Conference on Computing, Electronics and Electrical Technologies (2012). https://doi.org/10.1109/icceet.2012.6203897

  12. Huang, Q., Dam, B., Steele, D., Ashley, J., Niblack, W.: Foreground/background segmentation of color images by integration of multiple cues. In: IEEE International Conference on Image Processing, pp. 246–249 (1995). https://doi.org/10.1109/icip.1995.529692

  13. Haddon, J.F., Boyce, J.F.: Image segmentation by unifying region and boundary information. IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 929–948 (1990). https://doi.org/10.1109/34.58867

    Article  Google Scholar 

  14. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001). https://doi.org/10.1109/83.902291

    Article  MATH  Google Scholar 

  15. Mignotte, M.: A label field fusion bayesian model and its penalized maximum rand estimator for image segmentation. IEEE Trans. Image Process. 19(6), 1610–1624 (2010). https://doi.org/10.1109/tip.2010.2044965

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, G., Lin, Z., Yu, Y., Tang, X.: Unsupervised object segmentation with a hybrid graph model (HGM). IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 910–924 (2010). https://doi.org/10.1109/tpami.2009.40

    Article  Google Scholar 

  17. Techopedia-artificial intelligence. http://www.techopedia/artificialintelligence

  18. Techopedia-machine learning. http://www.techopedia/machinelearning

  19. Kim, K., Oh, C., Sohn, K.: Non-parametric human segmentation using support vector machine. In: 2016 IEEE International Conference on Consumer Electronics (ICCE) (2016). https://doi.org/10.1109/icce.2016.7430551

  20. Barinova, O., Shapovalov, R., Sudakov, S., Velizhev, A.: Online random forest for interactive image segmentation (2012)

    Google Scholar 

  21. Hemjot, Sharma, A.: A refinement: better classification of images using LDA in contrast with SURF and SVM for CBIR system. Int. J. Comput. Appl. 117(16), 31–33 (2015). https://doi.org/10.5120/20642-3349

    Article  Google Scholar 

  22. Mignotte, M.: Segmentation by fusion of histogram-based K-means clusters in different color spaces. IEEE Trans. Image Process. 17(5), 780–787 (2008). https://doi.org/10.1109/tip.2008.920761

    Article  MathSciNet  Google Scholar 

  23. Kumar, V.B., Karpagam, G.R., Rekha, V.N.: Performance analysis of deterministic centroid initialization method for partitional algorithms in image block clustering. Indian J. Sci. Technol. 8(S7), 63 (2015). https://doi.org/10.17485/ijst/2015/v8is7/63376

    Article  Google Scholar 

  24. Lee, S.H., Koo, H.I., Cho, N.I.: An unsupervised image segmentation algorithm based on the machine learning of appropriate features. In: 16th IEEE International Conference on Image Processing (ICIP). IEEE, Korea (2009). https://doi.org/10.1109/icip.2009.5413758

  25. Yang, Y., Wang, Y.: Simulated Annealing Spectral Clustering algorithm for image segmentation. J. Syst. Eng. Electron. 25(3), 514–522 (2014). https://doi.org/10.1109/jsee.2014.00059

    Article  MathSciNet  Google Scholar 

  26. Costin, H.: Elastic contour-based image segmentation using genetic algorithms. In: 2011 E-Health and Bioengineering Conference (EHB) (2011)

    Google Scholar 

  27. Kumar, V.B., Karpagam, G.R.: Evolutionary algorithm with memetic search for optic disc localization in retinal fundus images (In press)

    Google Scholar 

  28. Parihar, A.S.: Satellite image segmentation based on differential evolution. In: 2017 International Conference on Intelligent Sustainable Systems (ICISS) (2017). https://doi.org/10.1109/iss1.2017.8389245

  29. Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. In: Advanced Applications in Pattern Recognition book series (AAPR), pp. 43–93 (1981). https://doi.org/10.1007/978-1-4757-0450-1

    Book  MATH  Google Scholar 

  30. Alva, A., Akash, R.S., Manikantan, K.: Optimal multilevel thresholding based on Tsallis entropy and half-life constant PSO for improved image segmentation. In: IEEE UP Section Conference on Electrical Computer and Electronics (2015). https://doi.org/10.1109/upcon.2015.7456685

  31. Mirghasemi, S., Andreae, P., Zhang, M., Rayudu, R.: Severely noisy image segmentation via wavelet shrinkage using PSO and fuzzy C-means. In: IEEE Symposium Series on Computational Intelligence (2016). https://doi.org/10.1109/ssci.2016.7850051

  32. Na, L., Yan, J., Shu, L.: Application of PSO algorithm with dynamic inertia weight in medical image thresholding segmentation. In: IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom) (2017). https://doi.org/10.1109/healthcom.2017.8210769

  33. Terzopoulos, D., Witkin, A., Kass, M.: Constraints on deformable models: recovering 3D shape and nonrigid motion. Artif. Intell. 36(1), 91–123 (1988). https://doi.org/10.1016/0004-3702(88)90080-x

    Article  MATH  Google Scholar 

  34. Cristhian, A.C., Sanchez, R., Baradit, E.: Detection of knots using X-ray tomographies and deformable contours with simulated annealing. Wood Res., 57–66 (2008)

    Google Scholar 

  35. Cristhian, A.C., Mario, A., Angel, D.: Simulated Annealing—A Novel Application of Image Processing in the Wood Area (2012). https://doi.org/10.5772/50635

    Google Scholar 

  36. Hussain, A.R.: Optic nerve head segmentation using Genetic Active Contours. In: International Conference on Computer and Communication Engineering, pp. 783–787 (2008). https://doi.org/10.1109/iccce.2008.4580712

  37. Sierra, C.V, Novo, J., Santos, J., Penedo, M.G.: Frontiers in artificial intelligence and applications. In: Advances in Knowledge-Based and Intelligent Information and Engineering Systems, vol. 243, pp. 1380–1389 (2012)

    Google Scholar 

  38. Sierra, C.V, Novo, J., Santos, J., Penedo, M.G.: Emergent segmentation of topological active nets by means of evolutionary obtained artificial neural networks. In: Proceedings of the 5th International Conference on Agents and Artificial Intelligence (ICAART), vol. 2, pp. 44–50 (2013). https://doi.org/10.5220/0004195700440050

  39. Mesejo, P., Valsecchi, A., Marrakchi-Kacem, L., Cagnoni, S., Damas, S.: Biomedical image segmentation using geometric deformable models and metaheuristics. Comput. Med. Imaging Graph. 43, 167–178 (2015). https://doi.org/10.1016/j.compmedimag.2013.12.005

    Article  Google Scholar 

  40. Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J., Zisserman, A.: The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4

    Article  Google Scholar 

  41. Hamid, O.A., Mohamed, A.R., Jiang, H., Deng, L., Penn, G., Yu, D.: Convolutional neural networks for speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 22(10), 1533–1545 (2015). https://doi.org/10.1109/taslp.2014.2339736

    Article  Google Scholar 

  42. Lecun, Y., Bottou, L., Bengio, Y., Haffner.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  43. Bardou, D., Zhang, K., Ahmed, S.M.: Classification of breast cancer based on histology images using convolutional neural networks. IEEE Access 6, 24680–24693 (2018). https://doi.org/10.1109/access.2018.2831280

    Article  Google Scholar 

  44. Yuan, Y.: Automatic skin lesion segmentation with fully convolutional-deconvolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE, USA (2017). https://doi.org/10.1109/jbhi.2017.2787487

    Article  MathSciNet  Google Scholar 

  45. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (2015). https://doi.org/10.1109/cvpr.2015.7298965

  46. Toshev, A., Szegedy, C.: DeepPose: human pose estimation via deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2014). https://doi.org/10.1109/cvpr.2014.214

  47. Zitnick, C.L, Dollar, P.: Edge boxes: locating object proposals from edges. In: European Conference on Computer Vision (2014). https://doi.org/10.1007/978-3-319-10602-1_26

    Chapter  Google Scholar 

  48. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, USA (2014). https://doi.org/10.1109/cvpr.2014.81

  49. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2015). https://doi.org/10.1109/tpami.2016.2577031

    Article  Google Scholar 

  50. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot MultiBox detector. In: Lecture Notes in Computer Science, pp. 21–37 (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  51. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016). https://doi.org/10.1109/cvpr.2016.91

  52. Luo, S., Hu, Q., He, X., Li, J., Jin, J.S., Park, M.: Automatic liver parenchyma segmentation from abdominal CT images using support vector machines. In: ICME International Conference on Complex Medical Engineering (2009). https://doi.org/10.1109/iccme.2009.4906625

  53. Wang, S., Fu, D., Xu, M., Hu, D.: Advanced fuzzy cellular neural network: application to CT liver images. Artif. Intell. Med. 39(1), 65–77 (2007). https://doi.org/10.1016/j.artmed.2006.08.001

    Article  Google Scholar 

  54. Teixeira, G.M., Pommeranzembaum, I.R., Oliveira, B.L.D., Lobosco, M., Santos, R.W.D.: Automatic segmentation of cardiac MRI using snakes and genetic algorithms. In: Bubak, M., Dongarra, J., VanAlbada, G.D., Sloot, P.M.A. (eds.), Computational Science, vol. 5103, pp. 168–177 (2008). https://doi.org/10.1007/978-3-540-69389-5_20

    Chapter  Google Scholar 

  55. Hsu, C.-Y., Liu, C.-Y., Chen, C.-M.: Automatic segmentation of liver PET images, computerized medical imaging and graphics. Comput. Med. Imaging Graph. 32(7), 601–610 (2008). https://doi.org/10.1016/j.compmedimag.2008.07.001

    Article  Google Scholar 

  56. Shahamatnia, E., EbadzaSSdeh, M.M.: Application of particle swarm optimization and snake model hybrid on medical imaging. In: Proceeding of IEEE Third International Workshop on Computational Intelligence in Medical Imaging (2011). https://doi.org/10.1109/cimi.2011.5952043

  57. Montiel, O.R.., Aguilar, C.M.A., López, S.C., Velasco, A.F.J., López, M.F.E., Pulido, F.L.: Images segmentation by using differential evolution with constraints handling. In: IEEE Latin American Conference on Computational Intelligence (LA-CCI) (2017). https://doi.org/10.1109/la-cci.2017.8285713

  58. Liu, W., Deng, X., Shi, H.: Research on algorithm of PSO in image segmentation of cement-based. In: 7th International Conference on Cloud Computing and Big Data (CCBD) (2016). https://doi.org/10.1109/ccbd.2016.080

  59. Mesejo, P., Ugolotti, R., Cunto, F.D., Giacobini, M., Cagnoni, S.: Automatic hippocampus localization in histological images using differential evolution-based deformable models. Pattern Recogn. Lett. 34(3), 299–307 (2013). https://doi.org/10.1016/j.patrec.2012.10.012

    Article  Google Scholar 

  60. Wang, Y.-Y., Sun, Y.-N., Lin, C.-C.K., Ju, M.-S.: Segmentation of nerve fibers using multi-level gradient watershed and fuzzy systems. Artif. Intell. Med. 54(3), 189–200 (2012). https://doi.org/10.1016/j.artmed.2011.11.008

    Article  Google Scholar 

  61. Mesejo, P., Ugolotti, R., Cagnoni, S., Cunto, F.D., Giacobini, M.: Automatic segmentation of hippocampus in histological images of mouse brains using deformable models and random forest. In: 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS) (2012). https://doi.org/10.1109/cbms.2012.6266318

  62. Ugolotti, R., Mesejo, P., Cagnoni, S., Giacobini, M., Cunto, F.D.: Automatic hippocampus localization in histological images using PSO-based deformable models. In: 13th Annual Conference Companion on Genetic and Evolutionary Computation (GECCO), pp. 487–494 (2011). https://doi.org/10.1145/2001858.2002038

  63. Ugolotti, R., Nashed, Y.S.G., Mesejo, P., Ivekovic, S., Mussi, L., Cagnoni, S.: Particle swarm optimization and differential evolution for model-based object detection. Appl. Soft Comput. 13(6), 3092–3105 (2013). https://doi.org/10.1016/j.asoc.2012.11.027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Vinoth Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vinoth Kumar, B., Sabareeswaran, S., Madumitha, G. (2020). A Decennary Survey on Artificial Intelligence Methods for Image Segmentation. In: Venkata Rao, R., Taler, J. (eds) Advanced Engineering Optimization Through Intelligent Techniques. Advances in Intelligent Systems and Computing, vol 949. Springer, Singapore. https://doi.org/10.1007/978-981-13-8196-6_27

Download citation

Publish with us

Policies and ethics