Skip to main content

Strategic Molecular Beam Epitaxial Growth of GaAs/GaAsBi Heterostructures and Nanostructures

  • Chapter
  • First Online:
Bismuth-Containing Alloys and Nanostructures

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 285))

  • 925 Accesses

Abstract

In this chapter, we go over epitaxial growth of bismide thin films, multiple quantum wells, and nanostructures (nanowires) using molecular beam epitaxy (MBE) and their surface morphology, structural, and optical properties are investigated along with device applications. We describe how the Bi content in GaAs1−xBix epilayers grown on (100), (411)A, and (411)B GaAs substrates can be controlled by the growth conditions. Nonstandard growth conditions such as two-substrate-temperature technique (TST) are required for GaAs1−xBix because of the strong tendency of Bi atom segregation under usual growth conditions. We have reported a GaAs0.96Bi0.04/GaAs multiple quantum well LED grown by TST technique with a room temperature photoluminescence and electroluminescence at 1.23 μm emission wavelength. The TST procedure proves as a very efficient method to reduce Bi segregation and thus improves the quality of the GaAsBi layer at GaAs interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.J. Sweeney, S.R. Jin, Bismide-nitride alloys: Promising for efficient light emitting devices in the near- and mid-infrared. J. Appl. Phys. 113, 043110 (2013)

    Article  CAS  Google Scholar 

  2. T. Tiedje, E.C. Young, A. Mascarenhas, Growth and properties of the dilute bismide semiconductor GaAs1−xBix a complementary alloy to the dilute nitrides. Int. J. Nanotech. 5 (2008)

    Google Scholar 

  3. L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, S. Wang, Novel dilute bismide, epitaxy, physical properties and device application. Crystals 7, 63 (2017)

    Article  CAS  Google Scholar 

  4. L. Yue, Y. Song, X. Chen, Q. Chen, W. Pan, X. Wu, J. Liu, L. Zhang, J. Shao, S. Wang, Novel type II InGaAs/GaAsBi quantum well for longer wavelength emission. J. Alloy. Compd. 695, 753–759 (2017)

    Article  CAS  Google Scholar 

  5. D. Madouri, A. Boukra, A. Zaoui, M. Ferhat, Bismuth alloying in GaAs: a first-principles study. Comput. Mater. Sci. 43, 818–822 (2008)

    Article  CAS  Google Scholar 

  6. A.H. Reshak, H. Kamarudin, S. Auluck, Bismuth-containing semiconductors: Linear and nonlinear optical susceptibilities of GaAs1−xBix alloys. J. Alloy. Compd. 509, 9685–9691 (2011)

    Article  CAS  Google Scholar 

  7. M. Ferhat, A. Zaoui, Structural and electronic properties of III–V bismuth compounds. Phys. Rev. B. 73 (2006)

    Google Scholar 

  8. G. Luo, S. Yang, J. Li, M. Arjmand, I. Szlufarska, A.S. Brown, T.F. Kuech, D. Morgan, First-principles studies on molecular beam epitaxy growth of GaAs1−xBix. Phys. Rev. B. 92 (2015)

    Google Scholar 

  9. D.P. Samajdar, S. Dhar, Influence of bi-related impurity states on the bandgap and spin–orbit splitting energy of dilute III–V-Bi alloys: InP1−xBix, InAs1−xBix, InSb1−xBix and GaSb1−xBix. Superlattices Microstruct. 89, 112–119 (2016)

    Article  CAS  Google Scholar 

  10. D.P. Samajdar, S. Dhar, Estimation of Bi induced changes in the direct E0 band gap of III–V-Bi alloys and comparison with experimental data. Physica B 484, 27–30 (2016)

    Article  CAS  Google Scholar 

  11. A. Belabbes, A. Zaoui, M. Ferhat, Lattice dynamics study of bismuth III–V compounds. J. Phys.: Condens. Matter 20, 415221 (2008)

    Google Scholar 

  12. D. Madouri, M. Ferhat, How do electronic properties of conventional III–V semiconductors hold for the III–V boron bismuth BBi compound? physica status solidi (b) 242, 2856–2863 (2005)

    Google Scholar 

  13. K. Oe, H. Okamoto, New semiconductor alloy GaAs1−xBix grown by metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 37, L1283–L1285 (1998)

    Article  Google Scholar 

  14. K. Oe, Characteristics of semiconductor alloy GaAs1−xBix. Jpn. J. Appl. Phys. 41, 2801–2806 (2002)

    Article  CAS  Google Scholar 

  15. T. Wilson, N.P. Hylton, Y. Harada, P. Pearce, D. Alonso-Alvarez, A. Mellor, R.D. Richards, J.P.R. David, N.J. Ekins-Daukes, Assessing the nature of the distribution of localised states in bulk GaAsBi. Sci. Rep. 8, 6457 (2018)

    Article  CAS  Google Scholar 

  16. K. Oe, Metalorganic vapor phase epitaxial growth of metastable GaAs1−xBix alloy. J. Cryst. Growth 237, 1481–1485 (2002)

    Article  Google Scholar 

  17. K. Yamashita, M. Yoshimoto, K. Oe, Temperature-insensitive refractive index of GaAsBi alloy for laser diode in WDM optical communication. physica status solidi (c) 3, 693–696 (2006)

    Article  CAS  Google Scholar 

  18. J. Yoshida, T. Kita, O. Wada, K. Oe, Temperature dependence of GaAs1−xBix band gap studied by photoreflectance spectroscopy. Jpn. J. Appl. Phys. 42, 371–374 (2003)

    Article  CAS  Google Scholar 

  19. M. Yoshimoto, S. Murata, A. Chayahara, Y. Horino, J. Saraie, K. Oe, Metastable GaAsBi alloy grown by molecular beam epitaxy. Jpn. J. Appl. Phys. 42, L1235–L1237 (2003)

    Article  CAS  Google Scholar 

  20. X. Lu, D.A. Beaton, R.B. Lewis, T. Tiedje, M.B. Whitwick, Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs1−xBix. Appl. Phys. Lett. 92, 192110 (2008)

    Article  CAS  Google Scholar 

  21. R.B. Lewis, M. Masnadi-Shirazi, T. Tiedje, Growth of high Bi concentration GaAs1−xBix by molecular beam epitaxy. Appl. Phys. Lett. 101, 082112 (2012)

    Article  CAS  Google Scholar 

  22. V. Bahrami-Yekta, T. Tiedje, M. Masnadi-Shirazi, MBE growth optimization for GaAs1−xBix and dependence of photoluminescence on growth temperature. Semicond. Sci. Technol. 30, 094007 (2015)

    Article  CAS  Google Scholar 

  23. M. Yoshimoto, W. Huang, G. Feng, K. Oe, GaNAsBi semiconductor alloy with temperature-insensitive bandgap. Mater. Res. Soc. Symp. Proc. 891, 1–12 (2006)

    Google Scholar 

  24. M. Henini, J. Ibáñez, M. Schmidbauer, M. Shafi, S.V. Novikov, L. Turyanska, S.I. Molina, D.L. Sales, M.F. Chisholm, J. Misiewicz, Molecular beam epitaxy of GaBiAs on (311)B GaAs substrates. Appl. Phys. Lett. 91, 251909 (2007)

    Article  CAS  Google Scholar 

  25. R.D. Richards, F. Bastiman, C.J. Hunter, D.F. Mendes, A.R. Mohmad, J.S. Roberts, J.P.R. David, Molecular beam epitaxy growth of GaAsBi using As2 and As4. J. Cryst. Growth 390, 120–124 (2014)

    Article  CAS  Google Scholar 

  26. D. Dagnelund, J. Puustinen, M. Guina, W.M. Chen, I.A. Buyanova, Identification of an isolated arsenic antisite defect in GaAsBi. Appl. Phys. Lett. 104, 052110 (2014)

    Article  CAS  Google Scholar 

  27. P.K. Patil, F. Ishikawa, S. Shimomura, GaAsBi/GaAs MQWs grown by MBE using a two-substrate-temperature technique. J. Alloy. Compd. 725, 694–699 (2017)

    Article  CAS  Google Scholar 

  28. M. Yoshimoto, W. Huang, G. Feng, K. Oe, New semiconductor alloy GaNAsBi with temperature-insensitive bandgap. physica status solidi (b) 243, 1421–1425 (2006)

    Article  CAS  Google Scholar 

  29. G. Vardar, S.W. Paleg, M.V. Warren, M. Kang, S. Jeon, R.S. Goldman, Mechanisms of droplet formation and Bi incorporation during molecular beam epitaxy of GaAsBi. Appl. Phys. Lett. 102, 042106 (2013)

    Article  CAS  Google Scholar 

  30. C.R. Tait, L. Yan, J.M. Millunchick, Droplet induced compositional inhomogeneities in GaAsBi. Appl. Phys. Lett. 111, 042105 (2017)

    Article  CAS  Google Scholar 

  31. A.J. Ptak, R. France, D.A. Beaton, K. Alberi, J. Simon, A. Mascarenhas, C.S. Jiang, Kinetically limited growth of GaAsBi by molecular-beam epitaxy. J. Cryst. Growth 338, 107–110 (2012)

    Article  CAS  Google Scholar 

  32. P.M. Mooney, M.C. Tarun, V. Bahrami-Yekta, T. Tiedje, R.B. Lewis, M. Masnadi-Shirazi, Defect energy levels in p-type GaAsBi and GaAs grown by MBE at low temperatures. Semicond. Sci. Technol. 31, 065007 (2016)

    Article  CAS  Google Scholar 

  33. A.R. Mohmad, F. Bastiman, C.J. Hunter, R.D. Richards, S.J. Sweeney, J.S. Ng, J.P.R. David, B.Y. Majlis, Localization effects and band gap of GaAsBi alloys, physica status solidi (b) 251, 1276–1281 (2014)

    Article  CAS  Google Scholar 

  34. R.B. Lewis, D.A. Beaton, X. Lu, T. Tiedje, GaAs1−xBix light emitting diodes. J. Cryst. Growth 311, 1872–1875 (2009)

    Article  CAS  Google Scholar 

  35. P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I.P. Marko, S.R. Jin, K. Hild, S. Chatterjee, W. Stolz, S.J. Sweeney, K. Volz, Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser. Appl. Phys. Lett. 102, 242115 (2013)

    Article  CAS  Google Scholar 

  36. N. Hossain, I.P. Marko, S.R. Jin, K. Hild, S.J. Sweeney, R.B. Lewis, D.A. Beaton, T. Tiedje, Recombination mechanisms and band alignment of GaAs1−xBix/GaAs light emitting diodes. Appl. Phys. Lett. 100, 051105 (2012)

    Article  CAS  Google Scholar 

  37. T. Lu, Z. Ma, C. Du, Y. Fang, H. Wu, Y. Jiang, L. Wang, L. Dai, H. Jia, W. Liu, H. Chen, Temperature-dependent photoluminescence in light-emitting diodes. Sci. Rep. 4, 6131 (2014)

    Article  CAS  Google Scholar 

  38. I.P. Marko, S.R. Jin, K. Hild, Z. Batool, Z.L. Bushell, P. Ludewig, W. Stolz, K. Volz, R. Butkutė, V. Pačebutas, A. Geizutis, A. Krotkus, S.J. Sweeney, Properties of hybrid MOVPE/MBE grown GaAsBi/GaAs based near-infrared emitting quantum well lasers. Semicond. Sci. Technol. 30, 094008 (2015)

    Article  CAS  Google Scholar 

  39. R.D. Richards, A.R. Mohmad, J.P.R. David, C.J. Hunter, F. Bastiman, Telecommunication wavelength GaAsBi light emitting diodes. IET Optoelectron. 10, 34–38 (2016)

    Article  Google Scholar 

  40. P.K. Patil, E. Luna, T. Matsuda, K. Yamada, K. Kamiya, F. Ishikawa, S. Shimomura, GaAsBi/GaAs multi-quantum well LED grown by molecular beam epitaxy using a two-substrate-temperature technique. Nanotechnology 28, 105702 (2017)

    Article  CAS  Google Scholar 

  41. C.J. Hunter, F. Bastiman, A.R. Mohmad, R. Richards, J.S. Ng, S.J. Sweeney, J. David, Absorption characteristics of GaAs1−xBix/GaAs diodes in the near-infrared. IEEE Photonics Technol. Lett. 24, 2191–2194 (2012)

    Article  CAS  Google Scholar 

  42. Y. Tominaga, K. Oe, M. Yoshimoto, Low temperature dependence of oscillation wavelength in GaAs1−xBixLaser by photo-pumping. Appl. Phys. Express 3, 062201 (2010)

    Article  CAS  Google Scholar 

  43. T. Fuyuki, K. Yoshida, R. Yoshioka, M. Yoshimoto, Electrically pumped room-temperature operation of GaAs1−xBix laser diodes with low-temperature dependence of oscillation wavelength. Appl. Phys. Express 7, 082101 (2014)

    Article  CAS  Google Scholar 

  44. X. Wu, W. Pan, Z. Zhang, Y. Li, C. Cao, J. Liu, L. Zhang, Y. Song, H. Ou, S. Wang, 1.142 μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy. ACS Photonics 4 (2017) 1322–1326

    Article  CAS  Google Scholar 

  45. H. Kim, Y. Guan, S.E. Babcock, T.F. Kuech, L.J. Mawst, Characteristics of OMVPE grown GaAsBi QW lasers and impact of post-growth thermal annealing. J. Appl. Phys. 123, 113102 (2018)

    Article  CAS  Google Scholar 

  46. S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, F. Schiettekatte, Molecular beam epitaxy growth of GaAs1−xBix. Appl. Phys. Lett. 82, 2245–2247 (2003)

    Article  CAS  Google Scholar 

  47. S. Francoeur, M.J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, T. Tiedje, Band gap of GaAs1−xBix, 0 < x < 3.6%. Appl. Phys. Lett. 82, 3874–3876 (2003)

    Google Scholar 

  48. Z. Batool, K. Hild, T.J.C. Hosea, X. Lu, T. Tiedje, S.J. Sweeney, The electronic band structure of GaBiAs/GaAs layers: influence of strain and band anti-crossing. J. Appl. Phys. 111, 113108 (2012)

    Article  CAS  Google Scholar 

  49. Y. Takehara, M. Yoshimoto, W. Huang, J. Saraie, K. Oe, A. Chayahara, Y. Horino, Lattice distortion of GaAsBi alloy grown on GaAs by molecular beam epitaxy. Jpn. J. Appl. Phys. 45, 67–69 (2006)

    Article  CAS  Google Scholar 

  50. M.K. Rajpalke, W.M. Linhart, M. Birkett, K.M. Yu, J. Alaria, J. Kopaczek, R. Kudrawiec, T.S. Jones, M.J. Ashwin, T.D. Veal, High Bi content GaSbBi alloys. J. Appl. Phys. 116, 043511 (2014)

    Article  CAS  Google Scholar 

  51. A. Janotti, S.-H. Wei, S.B. Zhang, Theoretical study of the effects of isovalent coalloying of Bi and N in GaAs. Phys. Rev. B. 65 (2002)

    Google Scholar 

  52. K. Alberi, O.D. Dubon, W. Walukiewicz, K.M. Yu, K. Bertulis, A. Krotkus, Valence band anticrossing in GaBixAs1−x. Appl. Phys. Lett. 91, 051909 (2007)

    Article  CAS  Google Scholar 

  53. K. Alberi, J. Wu, W. Walukiewicz, K.M. Yu, O.D. Dubon, S.P. Watkins, C.X. Wang, X. Liu, Y.J. Cho, J. Furdyna, Valence-band anticrossing in mismatched III–V semiconductor alloys. Phys. Rev. B. 75 (2007)

    Google Scholar 

  54. M. Masnadi-Shirazi, R.B. Lewis, V. Bahrami-Yekta, T. Tiedje, M. Chicoine, P. Servati, Bandgap and optical absorption edge of GaAs1−xBix alloys with 0 < x < 17.8%. J. Appl. Phys. 116, 223506 (2014)

    Google Scholar 

  55. B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E.C. Young, T. Tiedje, Giant spin-orbit bowing in GaAs1−xBix. Phys. Rev. Lett. 97, 067205 (2006)

    Article  CAS  Google Scholar 

  56. A.J. Ptak, R. France, C.S. Jiang, R.C. Reedy, Effects of bismuth on wide-depletion-width GaInNAs solar cells. J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. 26, 1053 (2008)

    Article  CAS  Google Scholar 

  57. T. Thomas, A. Mellor, N.P. Hylton, M. Führer, D. Alonso-Álvarez, A. Braun, N.J. Ekins-Daukes, J.P.R. David, S.J. Sweeney, Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell. Semicond. Sci. Technol. 30, 094010 (2015)

    Article  CAS  Google Scholar 

  58. C.A. Broderick, P.E. Harnedy, E.P. O’Reilly, Theory of the electronic and optical properties of dilute bismide quantum well lasers. IEEE J. Sel. Top. Quantum Electron. 21, 287–299 (2015)

    Article  CAS  Google Scholar 

  59. K.K. Nagaraja, Y.A. Mityagin, M.P. Telenkov, I.P. Kazakov, GaAs(1−x)Bix: a promising material for optoelectronics applications. Crit. Rev. Solid State Mater. Sci. 42, 239–265 (2016)

    Article  CAS  Google Scholar 

  60. S. Imhof, C. Wagner, A. Chernikov, M. Koch, K. Kolata, N.S. Köster, S. Chatterjee, S.W. Koch, X. Lu, S.R. Johnson, D.A. Beaton, T. Tiedje, O. Rubel, A. Thränhardt, Evidence of two disorder scales in Ga(AsBi). physica status solidi (b) 248, 851–854 (2011)

    Article  CAS  Google Scholar 

  61. C. Gogineni, N.A. Riordan, S.R. Johnson, X. Lu, T. Tiedje, Disorder and the Urbach edge in dilute bismide GaAsBi. Appl. Phys. Lett. 103, 041110 (2013)

    Article  CAS  Google Scholar 

  62. Y.I. Mazur, V.G. Dorogan, M. Benamara, M.E. Ware, M. Schmidbauer, G.G. Tarasov, S.R. Johnson, X. Lu, S.Q. Yu, T. Tiedje, G.J. Salamo, Effects of spatial confinement and layer disorder in photoluminescence of GaAs1−xBix/GaAs heterostructures. J. Phys. D Appl. Phys. 46, 065306 (2013)

    Article  CAS  Google Scholar 

  63. R. Teissier, D. Sicault, J.C. Harmand, G. Ungaro, G. Le Roux, L. Largeau, Temperature-dependent valence band offset and band-gap energies of pseudomorphic GaAsSb on GaAs. J. Appl. Phys. 89, 5473–5477 (2001)

    Article  CAS  Google Scholar 

  64. Z. Zanolli, F. Fuchs, J. Furthmüller, U. von Barth, F. Bechstedt, Model GW band structure of InAs and GaAs in the wurtzite phase. Phys. Rev. B., 75 (2007)

    Google Scholar 

  65. J.S. Hwang, J.T. Tsai, I.C. Su, H.C. Lin, Y.T. Lu, P.C. Chiu, J.I. Chyi, GaAsSb bandgap, surface fermi level, and surface state density studied by photoreflectance modulation spectroscopy. Appl. Phys. Lett. 100, 222104 (2012)

    Article  CAS  Google Scholar 

  66. J. Kopaczek, R. Kudrawiec, W.M. Linhart, M.K. Rajpalke, K.M. Yu, T.S. Jones, M.J. Ashwin, J. Misiewicz, T.D. Veal, Temperature dependence of the band gap of GaSb1−xBix alloys with 0 < x ≤ 0.042 determined by photoreflectance. Appl. Phys. Lett. 103, 261907 (2013)

    Article  CAS  Google Scholar 

  67. C. Bilel, K. Chakir, A. Rebey, Z.A. Alrowaili, Study of Stark effect in n-doped 1.55 μm InN0.92yP1−1.92yBiy/InP MQWs. J. Electron. Mat., https://doi.org/10.1007/s11664-018-6368-5(2018)

  68. K. Chakir, C. Bilel, M.M. Habchi, A. Rebey, Discontinuities and bands alignments of strain-balanced III-V-N/III-V-Bi heterojunctions for mid-infrared photodetectors. Superlattices Microstruct. 102, 56–63 (2017)

    Article  CAS  Google Scholar 

  69. L.W. Sung, H.H. Lin, Highly strained 1.24-μm InGaAs/GaAs quantum-well lasers. Appl. Phys. Lett. 83, 1107–1109 (2003)

    Article  CAS  Google Scholar 

  70. J.C. Harmand, G. Ungaro, L. Largeau, G. Le Roux, Comparison of nitrogen incorporation in molecular-beam epitaxy of GaAsN, GaInAsN, and GaAsSbN. Appl. Phys. Lett. 77, 2482–2484 (2000)

    Article  CAS  Google Scholar 

  71. W. Huang, K. Oe, G. Feng, M. Yoshimoto, Molecular-beam epitaxy and characteristics of GaNyAs1−xyBix. J. Appl. Phys. 98, 053505 (2005)

    Article  CAS  Google Scholar 

  72. A. Mascarenhas, R. Kini, Y. Zhang, R. France, A. Ptak, Comparison of the dilute bismide and nitride alloys GaAsBi and GaAsN. physica status solidi (b) 246, 504–507 (2009)

    Article  CAS  Google Scholar 

  73. J. Hwang, J.D. Phillips, Band structure of strain-balanced GaAsBi/GaAsN superlattices on GaAs. Phys. Rev. B. 83 (2011)

    Google Scholar 

  74. U. Tisch, E. Finkman, J. Salzman, The anomalous bandgap bowing in GaAsN. Appl. Phys. Lett. 81, 463–465 (2002)

    Article  CAS  Google Scholar 

  75. S. Ridene, GaSbBi/GaSb quantum-well and wire laser diodes. Chem. Phys. Lett. 702, 44–48 (2018)

    Article  CAS  Google Scholar 

  76. O. Delorme, L. Cerutti, E. Luna, G. Narcy, A. Trampert, E. Tournié, J.B. Rodriguez, GaSbBi/GaSb quantum well laser diodes. Appl. Phys. Lett. 110, 222106 (2017)

    Article  CAS  Google Scholar 

  77. H. Kim, Y. Guan, K. Forghani, T.F. Kuech, L.J. Mawst, Laser diodes employing GaAs1−xBix/GaAs1−yPy quantum well active regions. Semicond. Sci. Technol. 32, 075007 (2017)

    Article  CAS  Google Scholar 

  78. A. Urbanowicz, V. Pačebutas, A. Geižutis, S. Stanionytė, A. Krotkus, Terahertz time-domain-spectroscopy system based on 1.55 μm fiber laser and photoconductive antennas from dilute bismides. AIP Adv. 6, 025218 (2016)

    Article  CAS  Google Scholar 

  79. I.P. Marko, C.A. Broderick, S. Jin, P. Ludewig, W. Stolz, K. Volz, J.M. Rorison, E.P. O’Reilly, S.J. Sweeney, Optical gain in GaAsBi/GaAs quantum well diode lasers. Sci. Rep. 6, 28863 (2016)

    Article  CAS  Google Scholar 

  80. I.P. Marko, P. Ludewig, Z.L. Bushell, S.R. Jin, K. Hild, Z. Batool, S. Reinhard, L. Nattermann, W. Stolz, K. Volz, S.J. Sweeney, Physical properties and optimization of GaBiAs/(Al)GaAs based near-infrared laser diodes grown by MOVPE with up to 4.4% Bi. J. Phys. D: Appl. Phys. 47, 345103 (2014)

    Google Scholar 

  81. T. Fuyuki, R. Yoshioka, K. Yoshida, M. Yoshimoto, Long-wavelength emission in photo-pumped GaAs1−xBix laser with low temperature dependence of lasing wavelength. Appl. Phys. Lett. 103, 202105 (2013)

    Article  CAS  Google Scholar 

  82. M. Yoshimoto, W. Huang, G. Feng, Y. Tanaka, K. Oe, Molecular-beam epitaxy of GaNAsBi layer for temperature-insensitive wavelength emission. J. Cryst. Growth 301–302, 975–978 (2007)

    Article  CAS  Google Scholar 

  83. S.D. Sifferman, H.P. Nair, R. Salas, N.T. Sheehan, S.J. Maddox, A.M. Crook, S.R. Bank, Highly strained mid-infrared type-I diode lasers on GaSb. IEEE J. Sel. Top. Quantum Electron. 21, 1–10 (2015)

    Article  CAS  Google Scholar 

  84. T. Fuyuki, S. Kashiyama, K. Oe, M. Yoshimoto, Interface States in p-type GaAs/GaAs1−xBix Heterostructure, Jpn. J. Appl. Phys. 51, 11PC02 (2012)

    Article  Google Scholar 

  85. P.M. Mooney, M. Tarun, D.A. Beaton, A. Mascarenhas, K. Alberi, Deep level defects in dilute GaAsBi alloys grown under intense UV illumination. Semicond. Sci. Technol. 31, 085014 (2016)

    Article  Google Scholar 

  86. G. Ciatto, E.C. Young, F. Glas, J. Chen, R.A. Mori, T. Tiedje, Spatial correlation between Bi atoms in diluteGaAs1−xBix: from random distribution to Bi pairing and clustering. Phys. Rev. B. 78 (2008)

    Google Scholar 

  87. S. Imhof, A. Thränhardt, A. Chernikov, M. Koch, N.S. Köster, K. Kolata, S. Chatterjee, S.W. Koch, X. Lu, S.R. Johnson, D.A. Beaton, T. Tiedje, O. Rubel, Clustering effects in Ga(AsBi). Appl. Phys. Lett. 96, 131115 (2010)

    Article  CAS  Google Scholar 

  88. M. Wu, E. Luna, J. Puustinen, M. Guina, A. Trampert, Formation and phase transformation of Bi-containing QD-like clusters in annealed GaAsBi. Nanotechnology 25, 205605 (2014)

    Article  CAS  Google Scholar 

  89. W. Huang, M. Yoshimoto, Y. Takehara, J. Saraie, K. Oe, GaNyAs1−x−yBix alloy lattice matched to GaAs with 1.3 µm photoluminescence emission. Jpn. J. Appl. Phys. 43, L1350–L1352 (2004)

    Article  CAS  Google Scholar 

  90. M. Yoshimoto, W. Huang, Y. Takehara, J. Saraie, A. Chayahara, Y. Horino, K. Oe, New semiconductor GaNAsBi alloy grown by molecular beam epitaxy. Jpn. J. Appl. Phys. 43, L845–L847 (2004)

    Article  CAS  Google Scholar 

  91. R.J. Potter, N. Balkan, Optical properties of GaNAs and GaInAsN quantum wells. J. Phys.: Condens. Matter 16, S3387–S3412 (2004)

    CAS  Google Scholar 

  92. C. Skierbiszewski, I. Gorczyca, S.P. Lepkowski, J. Lusakowski, J. Borysiuk, J. Toivonen, The electron effective mass at the bottom of the GaNAs conduction band. Semicond. Sci. Technol., 1189–1195 (2004)

    Article  CAS  Google Scholar 

  93. S. Tixier, M. Adamcyk, E.C. Young, J.H. Schmid, T. Tiedje, Surfactant enhanced growth of GaNAs and InGaNAs using bismuth. J. Cryst. Growth 251, 449–454 (2003)

    Article  CAS  Google Scholar 

  94. A. Ben Nasr, M.M. Habchi, C. Bilel, A. Rebey, B. El Jani, Theoretical calculations of absorption spectra of GaNAsBi-based MQWs operating at 1.55 μm. J. Alloys Compd. 647, 159–166 (2015)

    Article  CAS  Google Scholar 

  95. S. Nacer, A. Aissat, K. Ferdjani, Band gap and band offsets of GaNAsBi lattice matched to GaAs substrate. Opt. Quant. Electron. 40, 677–683 (2008)

    Article  CAS  Google Scholar 

  96. S. Tixier, S.E. Webster, E.C. Young, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, F. Schiettekatte, Band gaps of the dilute quaternary alloys GaNxAs1−xyBiy and Ga1−yInyNxAs1−x. Appl. Phys. Lett. 86, 112113 (2005)

    Article  CAS  Google Scholar 

  97. T.S. Kim, T.V. Cuong, C.S. Park, J.Y. Park, H.J. Lee, E.K. Suh, C.H. Hon, Composition dependence of the band-gap energy of GaAsN alloys. J. Korean Phys. Soc. 43, 273–276 (2003)

    CAS  Google Scholar 

  98. Z.L. Bushell, P. Ludewig, N. Knaub, Z. Batool, K. Hild, W. Stolz, S.J. Sweeney, K. Volz, Growth and characterisation of Ga(NAsBi) alloy by metal–organic vapour phase epitaxy. J. Cryst. Growth 396, 79–84 (2014)

    Article  CAS  Google Scholar 

  99. A. Alemu, A. Freundlich, Opportunities in dilute nitride III–V semiconductors quantum confined p–i–n solar cells for single carrier resonant tunneling. Microelectron. J. 40, 421–423 (2009)

    Article  CAS  Google Scholar 

  100. D. König, K. Casalenuovo, Y. Takeda, G. Conibeer, J.F. Guillemoles, R. Patterson, L.M. Huang, M.A. Green, Hot carrier solar cells: principles, materials and design. Physica E 42, 2862–2866 (2010)

    Article  CAS  Google Scholar 

  101. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 42). Prog. Photovoltaics Res. Appl. 21, 827–837 (2013)

    Article  Google Scholar 

  102. D.B. Bushnell, T.N.D. Tibbits, K.W.J. Barnham, J.P. Connolly, M. Mazzer, N.J. Ekins-Daukes, J.S. Roberts, G. Hill, R. Airey, Effect of well number on the performance of quantum-well solar cells. J. Appl. Phys. 97, 124908 (2005)

    Article  CAS  Google Scholar 

  103. I.M. Dharmadasa, Third generation multi-layer tandem solar cells for achieving high conversion efficiencies. Sol. Energy Mater. Sol. Cells 85, 293–300 (2005)

    Article  CAS  Google Scholar 

  104. M.C. Alonso-García, J.M. Ruíz, Analysis and modelling the reverse characteristic of photovoltaic cells. Sol. Energy Mater. Sol. Cells 90, 1105–1120 (2006)

    Article  CAS  Google Scholar 

  105. M. Meusel, C. Baur, G. Siefer, F. Dimroth, A.W. Bett, W. Warta, Characterization of monolithic III–V multi-junction solar cells—challenges and application. Sol. Energy Mater. Sol. Cells 90, 3268–3275 (2006)

    Article  CAS  Google Scholar 

  106. M. Mazzer, K.W.J. Barnham, I.M. Ballard, A. Bessiere, A. Ioannides, D.C. Johnson, M.C. Lynch, T.N.D. Tibbits, J.S. Roberts, G. Hill, C. Calder, Progress in quantum well solar cells. Thin Solid Films 511–512, 76–83 (2006)

    Article  CAS  Google Scholar 

  107. R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, N.H. Karam, 40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells. Appl. Phys. Lett. 90, 183516 (2007)

    Article  CAS  Google Scholar 

  108. Z.L. Bushell, R.M. Joseph, L. Nattermann, P. Ludewig, K. Volz, J.L. Keddie, S.J. Sweeney, Optical functions and critical points of dilute bismide alloys studied by spectroscopic ellipsometry. J. Appl. Phys. 123, 045701 (2018)

    Article  CAS  Google Scholar 

  109. M. Courel, J.C. Rimada, L. Hernández, GaAs/GaInNAs quantum well and superlattice solar cell. Appl. Phys. Lett. 100, 073508 (2012)

    Article  CAS  Google Scholar 

  110. B. Browne, J. Lacey, T. Tibbits, G. Bacchin, T.-C. Wu, J.Q. Liu, X. Chen, V. Rees, J. Tsai, J.-G. Werthen, Triple-junction quantum-well solar cells in commercial production, pp. 3–5 (2013)

    Google Scholar 

  111. B. Galiana, C. Algora, I. Rey-Stolle, Explanation for the dark I-V curve of III–V concentrator solar cells. Prog. Photovoltaics Res. Appl. 16, 331–338 (2008)

    Article  CAS  Google Scholar 

  112. W. Kwapil, M. Kasemann, P. Gundel, M.C. Schubert, W. Warta, P. Bronsveld, G. Coletti, Diode breakdown related to recombination active defects in block-cast multicrystalline silicon solar cells. J. Appl. Phys. 106, 063530 (2009)

    Article  CAS  Google Scholar 

  113. M.C. Scharber, N.S. Sariciftci, Efficiency of bulk-heterojunction organic solar cells. Prog. Polym. Sci. 38, 1929–1940 (2013)

    Article  CAS  Google Scholar 

  114. R.D. Richards, A. Mellor, F. Harun, J.S. Cheong, N.P. Hylton, T. Wilson, T. Thomas, J.S. Roberts, N.J. Ekins-Daukes, J.P.R. David, Photovoltaic characterisation of GaAsBi/GaAs multiple quantum well devices. Sol. Energy Mater. Sol. Cells 172, 238–243 (2017)

    Article  CAS  Google Scholar 

  115. B.U. Haq, R. Ahmed, M. Mohamad, A. Shaari, J. Rhee, S. AlFaify, M.B. Kanoun, S. Goumri-Said, Engineering of highly mismatched alloy with semiconductor and semi-metallic substituent’s for photovoltaic applications. Curr. Appl. Phys. 17, 162–168 (2017)

    Article  Google Scholar 

  116. D.A. Beaton, A.J. Ptak, K. Alberi, A. Mascarenhas, Quaternary bismide alloy lattice matched to GaAs. J. Cryst. Growth 351, 37–40 (2012)

    Article  CAS  Google Scholar 

  117. H. Fitouri, I. Moussa, A. Rebey, B. El Jani, Study of GaAsBi MOVPE growth on (100) GaAs substrate under high Bi flow rate by high resolution X-ray diffraction. Microelectron. Eng. 88, 476–479 (2011)

    Article  CAS  Google Scholar 

  118. P.K. Patil, F. Ishikawa, S. Shimomura, Bismuth flux dependence of GaAsBi/GaAs MQWs grown by molecular beam epitaxy using two-substrate-temperature technique. Superlattices Microstruct. 106, 50–57 (2017)

    Article  CAS  Google Scholar 

  119. R.R. Wixom, L.W. Rieth, G.B. Stringfellow, Sb and Bi surfactant effects on homo-epitaxy of GaAs on (001) patterned substrates. J. Cryst. Growth 265, 367–374 (2004)

    Article  CAS  Google Scholar 

  120. H. Jacobsen, B. Puchala, T.F. Kuech, D. Morgan, Ab initiostudy of the strain dependent thermodynamics of Bi doping in GaAs. Phys. Rev. B. 86 (2012)

    Google Scholar 

  121. M.P.J. Punkkinen, A. Lahti, P. Laukkanen, M. Kuzmin, M. Tuominen, M. Yasir, J. Dahl, J. Mäkelä, H.L. Zhang, L. Vitos, K. Kokko, Thermodynamics of the pseudobinary GaAs1−xBix (0 ≤ x ≤ 1) alloys studied by different exchange-correlation functionals, special quasi-random structures and Monte Carlo simulations. Comput. Condens. Matter 5, 7–13 (2015)

    Article  Google Scholar 

  122. A.G. Norman, R. France, A.J. Ptak, Atomic ordering and phase separation in MBE GaAs1−xBix. J. Vac Sci. Technol. B, Nanotechnol. Microelectron. Mat. Process. Meas. Phenom. 29, 03C121 (2011)

    Google Scholar 

  123. D.L. Sales, E. Guerrero, J.F. Rodrigo, P.L. Galindo, A. Yáñez, M. Shafi, A. Khatab, R.H. Mari, M. Henini, S. Novikov, M.F. Chisholm, S.I. Molina, Distribution of bismuth atoms in epitaxial GaAsBi. Appl. Phys. Lett. 98, 101902 (2011)

    Article  CAS  Google Scholar 

  124. D.F. Reyes, F. Bastiman, C.J. Hunter, D.L. Sales, A.M. Sanchez, J.P.R. David, D. González, Bismuth incorporation and the role of ordering in GaAsBi/GaAs structures. Nanoscale Res. Lett. 9, 23 (2014)

    Article  CAS  Google Scholar 

  125. M. Wu, E. Luna, J. Puustinen, M. Guina, A. Trampert, Observation of atomic ordering of triple-period-A and -B type in GaAsBi. Appl. Phys. Lett. 105, 041602 (2014)

    Article  CAS  Google Scholar 

  126. A. Beyer, N. Knaub, P. Rosenow, K. Jandieri, P. Ludewig, L. Bannow, S.W. Koch, R. Tonner, K. Volz, Local Bi ordering in MOVPE grown Ga(As, Bi) investigated by high resolution scanning transmission electron microscopy. Appl. Mat. Today 6, 22–28 (2017)

    Article  Google Scholar 

  127. R. Butkutė, V. Pačebutas, B. Čechavičius, R. Adomavičius, A. Koroliov, A. Krotkus, Thermal annealing effect on the properties of GaBiAs, physica status solidi (c), 9, 1614–1616 (2012)

    Google Scholar 

  128. J. Puustinen, M. Wu, E. Luna, A. Schramm, P. Laukkanen, M. Laitinen, T. Sajavaara, M. Guina, Variation of lattice constant and cluster formation in GaAsBi. J. Appl. Phys. 114, 243504 (2013)

    Article  CAS  Google Scholar 

  129. R. Butkute, G. Niaura, E. Pozingyte, B. Cechavicius, A. Selskis, M. Skapas, V. Karpus, A. Krotkus, Bismuth quantum dots in annealed GaAsBi/AlAs quantum wells. Nanoscale Res. Lett. 12, 436 (2017)

    Article  CAS  Google Scholar 

  130. A.W. Wood, W. Chen, H. Kim, Y. Guan, K. Forghani, A. Anand, T.F. Kuech, L.J. Mawst, S.E. Babcock, Annealing-induced precipitate formation behavior in MOVPE-grown GaAs1−xBix explored by atom probe tomography and HAADF-STEM. Nanotechnology 28, 215704 (2017)

    Article  CAS  Google Scholar 

  131. N. Balades, D.L. Sales, M. Herrera, C.H. Tan, Y. Liu, R.D. Richards, S.I. Molina, Analysis of Bi distribution in epitaxial GaAsBi by aberration-corrected HAADF-STEM. Nanoscale Res. Lett. 13, 125 (2018)

    Article  CAS  Google Scholar 

  132. E. Luna, M. Wu, J. Puustinen, M. Guina, A. Trampert, Spontaneous formation of nanostructures by surface spinodal decomposition in GaAs1−xBix epilayers. J. Appl. Phys. 117, 185302 (2015)

    Article  CAS  Google Scholar 

  133. E. Luna, M. Wu, M. Hanke, J. Puustinen, M. Guina, A. Trampert, Spontaneous formation of three-dimensionally ordered Bi-rich nanostructures within GaAs1-x Bi x/GaAs quantum wells. Nanotechnology 27, 325603 (2016)

    Article  CAS  Google Scholar 

  134. J. Lu, P.T. Webster, S. Liu, Y.H. Zhang, S.R. Johnson, D.J. Smith, Investigation of MBE-grown InAs1−xBix alloys and Bi-mediated type-II superlattices by transmission electron microscopy. J. Cryst. Growth 425, 250–254 (2015)

    Article  CAS  Google Scholar 

  135. E. Luna, J. Puustinen, M. Wu, J. Hilska, M. Guina, A. Trampert, The role of epitaxial strain on the spontaneous formation of Bi-rich nanostructures in Ga(As, Bi) epilayers and quantum wells. Nanosci. Nanotechnol. Lett. 9, 1132–1138 (2017)

    Article  Google Scholar 

  136. F. Bastiman, A.R.B. Mohmad, J.S. Ng, J.P.R. David, S.J. Sweeney, Non-stoichiometric GaAsBi/GaAs (100) molecular beam epitaxy growth. J. Cryst. Growth 338, 57–61 (2012)

    Article  CAS  Google Scholar 

  137. A. Duzik, J.C. Thomas, J.M. Millunchick, J. Lång, M.P.J. Punkkinen, P. Laukkanen, Surface structure of bismuth terminated GaAs surfaces grown with molecular beam epitaxy. Surf. Sci. 606, 1203–1207 (2012)

    Article  CAS  Google Scholar 

  138. A.R. Mohmad, F. Bastiman, C.J. Hunter, F. Harun, D.F. Reyes, D.L. Sales, D. Gonzalez, R.D. Richards, J.P.R. David, B.Y. Majlis, Bismuth concentration inhomogeneity in GaAsBi bulk and quantum well structures. Semicond. Sci. Technol. 30, 094018 (2015)

    Article  CAS  Google Scholar 

  139. A.W. Wood, Y. Guan, K. Forghani, A. Anand, T.F. Kuech, S.E. Babcock, Unexpected bismuth concentration profiles in metal-organic vapor phase epitaxy-grown Ga(As1−xBix)/GaAs superlattices revealed by Z-contrast scanning transmission electron microscopy imaging. APL Mat. 3, 036108 (2015)

    Article  CAS  Google Scholar 

  140. A.W. Wood, K. Collar, J. Li, A.S. Brown, S.E. Babcock, Droplet-mediated formation of embedded GaAs nanowires in MBE GaAs(1−x)Bi(x) films. Nanotechnology 27, 115704 (2016)

    Article  CAS  Google Scholar 

  141. C.R. Tait, L. Yan, J.M. Millunchick, Spontaneous nanostructure formation in GaAsBi alloys. J. Cryst. Growth 493, 20–24 (2018)

    Article  CAS  Google Scholar 

  142. Y. Tominaga, Y. Kinoshita, K. Oe, M. Yoshimoto, Structural investigation of GaAs1−xBix/GaAs multiquantum wells. Appl. Phys. Lett. 93, 131915 (2008)

    Article  CAS  Google Scholar 

  143. P. Patil, T. Tatebe, Y. Nabara, K. Higaki, N. Nishii, S. Tanaka, F. Ishikawa, S. Shimomura, Growth of GaAsBi/GaAs multi quantum wells on (100) GaAs substrates by molecular beam epitaxy. e-J. Surf. Sci. Nanotechnol. 13, 469–473 (2015)

    Article  CAS  Google Scholar 

  144. Y.I. Mazur, V.G. Dorogan, L.D. de Souza, D. Fan, M. Benamara, M. Schmidbauer, M.E. Ware, G.G. Tarasov, S.Q. Yu, G.E. Marques, G.J. Salamo, Effects of AlGaAs cladding layers on the luminescence of GaAs/GaAs1−xBix/GaAs heterostructures. Nanotechnology 25, 035702 (2014)

    Article  Google Scholar 

  145. I. Moussa, H. Fitouri, Z. Chine, A. Rebey, B. El Jani, Effect of thermal annealing on structural and optical properties of the GaAs0.963Bi0.037alloy. Semicond. Sci. Technol. 23, 125034 (2008)

    Article  CAS  Google Scholar 

  146. J.F. Rodrigo, D.L. Sales, M. Shafi, M. Henini, L. Turyanska, S. Novikov, S.I. Molina, Effect of annealing on the structural and optical properties of (311)B GaAsBi layers. Appl. Surf. Sci. 256, 5688–5690 (2010)

    Article  CAS  Google Scholar 

  147. O.M. Lemine, A. Alkaoud, H.V. Avanço Galeti, V. Orsi Gordo, Y. Galvão Gobato, H. Bouzid, A. Hajry, M. Henini, Thermal annealing effects on the optical and structural properties of (100) GaAs1−xBix layers grown by Molecular Beam Epitaxy. Superlattices Microstruct 65, 48–55 (2014)

    Google Scholar 

  148. P.C. Grant, D. Fan, A. Mosleh, S.-Q. Yu, V.G. Dorogan, M.E. Hawkridge, Y.I. Mazur, M. Benamara, G.J. Salamo, S.R. Johnson, Rapid thermal annealing effect on GaAsBi/GaAs single quantum wells grown by molecular beam epitaxy. J. Vac Sci. Technol. B, Nanotechnol. Microelectron. Mat. Process. Meas. Phenom. 32, 02C119 (2014)

    Google Scholar 

  149. P.K. Patil, F. Ishikawa, S. Shimomura, GaAsBi/GaAs MQWs MBE growth on (411) GaAs substrate. Superlattices Microstruct. 100, 1205–1212 (2016)

    Article  CAS  Google Scholar 

  150. X. Lu, D.A. Beaton, R.B. Lewis, T. Tiedje, Y. Zhang, Composition dependence of photoluminescence of GaAs1−xBix alloys. Appl. Phys. Lett. 95, 041903 (2009)

    Article  CAS  Google Scholar 

  151. H. Fitouri, I. Moussa, A. Rebey, B. El Jani, Surface analysis of different oriented GaAs substrates annealed under bismuth flow. J. Cryst. Growth 300, 347–352 (2007)

    Article  CAS  Google Scholar 

  152. T. Kitada, S. Shimomura, S. Hiyamizu, Surface segregation of indium atoms during molecular beam epitaxy of InGaAs/GaAs superlattices on GaAs substrates. J. Cryst. Growth 301–302, 172–176 (2007)

    Article  CAS  Google Scholar 

  153. Y. Tsuda, S. Shimomura, S. Hiyamizu, N. Sano, Characterization of GaAs/AIAs interfacial atomic step structures on a (411)A-oriented substrate by transmission electron microscope. J. Cryst. Growth 150, 415–420 (1995)

    Article  CAS  Google Scholar 

  154. S. Shimomura, K. Shinohara, K. Kasahara, S. Hiyamizu, Electron mobility in selectively Si-doped GaAs/N–Al0.3Ga0.7As quantum well heterostructures with super-flat interfaces grown on (411)A GaAs substrates by molecular beam epitaxy. Microelectron. Eng. 43, 213–219 (1998)

    Article  Google Scholar 

  155. S. Hiyamizu, S. Shimomura, T. Kitada, Super-flat (411)A interfaces and uniformly corrugated (775)B interfaces in GaAs/AlGaAs and InGaAs/InAlAs heterostructures grown by molecular beam epitaxy. Microelectron. J. 30, 379–385 (1999)

    Article  CAS  Google Scholar 

  156. K. Shinohara, Y. Shimizu, S. Shimomura, S. Hiyamizu, Recovery of (411)A Superflat Interfaces in GaAs/Al0.3Ga0.7As quantum wells grown on (411)A GaAs substrate by molecular beam epitaxy. Jpn. J. Appl. Phys. 38 (1999)

    Article  CAS  Google Scholar 

  157. M.K. Shakfa, D. Kalincev, X. Lu, S.R. Johnson, D.A. Beaton, T. Tiedje, A. Chernikov, S. Chatterjee, M. Koch, Quantitative study of localization effects and recombination dynamics in GaAsBi/GaAs single quantum wells. J. Appl. Phys. 114, 164306 (2013)

    Article  CAS  Google Scholar 

  158. M. Yoshimoto, M. Itoh, Y. Tominaga, K. Oe, Quantitative estimation of density of Bi-induced localized states in GaAs1−xBix grown by molecular beam epitaxy. J. Cryst. Growth 378, 73–76 (2013)

    Article  CAS  Google Scholar 

  159. H. Fitouri, Y. Essouda, I. Zaied, A. Rebey, B. El Jani, Photoreflectance and photoluminescence study of localization effects in GaAsBi alloys. Opt. Mater. 42, 67–71 (2015)

    Article  CAS  Google Scholar 

  160. F. Ishikawa, Y. Akamatsu, K. Watanabe, F. Uesugi, S. Asahina, U. Jahn, S. Shimomura, Metamorphic GaAs/GaAsBi Heterostructured Nanowires. Nano Lett. 15, 7265–7272 (2015)

    Article  CAS  Google Scholar 

  161. R.B. Lewis, P. Corfdir, J. Herranz, H. Kupers, U. Jahn, O. Brandt, L. Geelhaar, Self-assembly of InAs nanostructures on the sidewalls of GaAs nanowires directed by a Bi surfactant. Nano Lett. 17, 4255–4260 (2017)

    Article  CAS  Google Scholar 

  162. Y. Essouda, H. Fitouri, R. Boussaha, N. Elayech, A. Rebey, B.E. Jani, Bismuth catalyzed growth of GaAsBi nanowires by metalorganic vapor phase epitaxy. Mater. Lett. 152, 298–301 (2015)

    Article  CAS  Google Scholar 

  163. L. Ding, P. Lu, H. Cao, N. Cai, Z. Yu, T. Gao, S. Wang, Bismuth alloying properties in GaAs nanowires. J. Solid State Chem. 205, 44–48 (2013)

    Article  CAS  Google Scholar 

  164. R. Colby, Z. Liang, I.H. Wildeson, D.A. Ewoldt, T.D. Sands, R.E. Garcia, E.A. Stach, Dislocation filtering in GaN nanostructures. Nano Lett. 10, 1568–1573 (2010)

    Article  CAS  Google Scholar 

  165. K. Kishino, S. Ishizawa, Selective-area growth of GaN nanocolumns on Si(111) substrates for application to nanocolumn emitters with systematic analysis of dislocation filtering effect of nanocolumns. Nanotechnology 26, 225602 (2015)

    Article  CAS  Google Scholar 

  166. E. Ertekin, P.A. Greaney, D.C. Chrzan, T.D. Sands, Equilibrium limits of coherency in strained nanowire heterostructures. J. Appl. Phys. 97, 114325 (2005)

    Article  CAS  Google Scholar 

  167. N. Ahn, Y. Araki, M. Kondow, M. Yamaguchi, F. Ishikawa, Effects of growth interruption, As and Ga fluxes, and nitrogen plasma irradiation on the molecular beam epitaxial growth of GaAs/GaAsN core–shell nanowires on Si(111). Jpn. J. Appl. Phys. 53, 065001 (2014)

    Article  CAS  Google Scholar 

  168. J.A. Czaban, D.A. Thompson, R.R. LaPierre, GaAs Core-shell nanowires for photovoltaic applications. Nano Lett. 9, 148154 (2008)

    Google Scholar 

  169. Q.G.H.J. Joyce, H.H. Tan, C. Jagadish, Y. Kim, M.A. Fickenscher, S. Perera, T.B. Hoang, L.M. Smith, H.E. Jackson, J.M. Yarrison-Rice, X. Zhang, J. Zou, Unexpected benefits of rapid growth rate for III-V nanowires. Nano Lett. 9, 695–701 (2009)

    Article  CAS  Google Scholar 

  170. E. Dimakis, U. Jahn, M. Ramsteiner, A. Tahraoui, J. Grandal, X. Kong, O. Marquardt, A. Trampert, H. Riechert, L. Geelhaar, Coaxial multishell (In, Ga)As/GaAs nanowires for near-infrared emission on Si substrates. Nano Lett. 14, 2604–2609 (2014)

    Article  CAS  Google Scholar 

  171. M.C. Plante, R.R. Lapierre, Control of GaAs nanowire morphology and crystal structure. Nanotechnology 19, 495603 (2008)

    Article  CAS  Google Scholar 

  172. J.H. Paek, T. Nishiwaki, M. Yamaguchi, N. Sawaki, Catalyst free MBE-VLS growth of GaAs nanowires on (111)Si substrate. physica status solidi (c) 6, 1436–1440 (2009)

    Article  CAS  Google Scholar 

  173. C.W. Snyder, B.G. Orr, D. Kessler, L.M. Sander, Effect of strain on surface morphology in highly strained InGaAs films. Phys. Rev. Lett. 66, 3032–3035 (1991)

    Article  CAS  Google Scholar 

  174. I. Moussa, H. Fitouri, A. Rebey, B. El Jani, Atmospheric-pressure metalorganic vapour phase epitaxy optimization of GaAsBi alloy. Thin Solid Films 516, 8372–8376 (2008)

    Article  CAS  Google Scholar 

  175. K. Sarcan, Ö. Dönmez, K. Kara, A. Erol, E. Akalın, M. C. Arıkan, H. Makhloufi, A. Arnoult, C. Fontaine, Bismuth-induced effects on optical, lattice vibrational, and structural properties of bulk GaAsBi alloys. Nanoscale Res. Lett. 9(1), 119 (2014)

    Article  CAS  Google Scholar 

  176. H.J. Joyce, Q. Gao, H.H. Tan, C. Jagadish, Y. Kim, X. Zhang, Y. Guo, J. Zou, Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. Nano Lett. 7, 921–926 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallavi Kisan Patil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patil, P.K., Shimomura, S., Ishikawa, F., Luna, E., Yoshimoto, M. (2019). Strategic Molecular Beam Epitaxial Growth of GaAs/GaAsBi Heterostructures and Nanostructures. In: Wang, S., Lu, P. (eds) Bismuth-Containing Alloys and Nanostructures. Springer Series in Materials Science, vol 285. Springer, Singapore. https://doi.org/10.1007/978-981-13-8078-5_4

Download citation

Publish with us

Policies and ethics