Skip to main content

Protective Effects of Taurine on the Radiation Exposure Induced Cellular Damages in the Mouse Intestine

  • Conference paper
  • First Online:
Taurine 11

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1155))

Abstract

There has been a growing interest in radiation effects as a result of the Fukushima nuclear power plant accident in 2011. Exposure to ionizing radiation causes oxidizing events to different organs such as the bone marrow, intestine, and kidney, which can result in radiation-induced injuries. Taurine (2-aminoethanesulfonic acid) is a sulfur-containing amino acid possessing several important physiological functions, including membrane stabilization, anti-oxidative activity, anti-inflammatory effects and modulation of intracellular calcium levels. Taurine appears to be an attractive candidate for use as a radioprotector and as a radiation mitigator, but its protection mechanism against radiation-induced cell damage is still unclear until now. In this review we describe some of the mechanisms explaining the radioprotective/mitigating effects of taurine on radiation-induced cellular damage and our recent findings on this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 419.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Tau:

Taurine

TauT:

Taurine transporter

ROS:

Reactive oxygen species

References

  • Abe M, Takahashi M, Takeuchi K, Fukuda M (1968) Studies on the significance of taurine in radiation injury. Radiat Res 33:563–573

    Article  CAS  PubMed  Google Scholar 

  • Anscher MS (2010) Targeting the TGF-beta1 pathway to prevent normal tissue injury after cancer therapy. Oncologist 15:350–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barua M, Liu Y, Quinn MR (2001) Taurine chloramine inhibits inducible nitric oxide synthase and TNF-alpha gene expression in activated alveolar macrophages: decreased NF-kappaB activation and IkappaB kinase activity. J Immunol 167(4):2275–2281

    Article  CAS  PubMed  Google Scholar 

  • Bhilwade HN, Jayakumar S, Chaubey RC (2014) Age-dependent changes in spontaneous frequency of micronucleated erythrocytes in bone marrow and DNA damage in peripheral blood of Swiss mice. Mutat Res Genet Toxicol Environ Mutagen 770:80–84

    Article  CAS  PubMed  Google Scholar 

  • Brown JM (1985) Sensitizers and protectors in radiotherapy. Cancer. 1 55(9 Suppl):2222–2228

    Article  CAS  PubMed  Google Scholar 

  • Cetiner M, Sener G, Sehirli AO, EkÅŸioÄŸlu-Demiralp E, Ercan F, Sirvanci S, Gedik N, Akpulat S, Tecimer T, YeÄŸen BC (2005) Taurine protects against methotrexate-induced toxicity and inhibits leucocyte death. Toxicol Appl Pharmacol 209:39–50

    Article  CAS  PubMed  Google Scholar 

  • Chok MK, Conti M, Almolki A, Ferlicot S, Loric S, Dürrbach A, Benoît G, Droupy S, Eschwège P (2010) Renoprotective potency of amifostine in rat renal ischaemia-reperfusion. Nephrol Dial Transplant 25(12):3845–3851

    Article  CAS  PubMed  Google Scholar 

  • Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB (2010) Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist 15(4):360–371

    Article  PubMed  PubMed Central  Google Scholar 

  • Criswell T, Leskov K, Miyamoto S, Luo G, Boothman DA (2003) Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene 22:5813–5827

    Article  CAS  PubMed  Google Scholar 

  • Dainiak N (2002) Hematologic consequences of exposure to ionizing radiation. Exp Hematol 30(6):513–528

    Article  CAS  PubMed  Google Scholar 

  • Datta K, Suman S, Kallakury BV, Fornace AJ Jr (2012) Exposure to heavy ion radiation induces persistent oxidative stress in mouse intestine. PLoS One 7(8):e42224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dayang W, Dongbo P (2017) Taurine protects lens epithelial cells against ultraviolet B-induced apoptosis. Curr Eye Res 42(10):1407–1411

    Article  PubMed  Google Scholar 

  • Duan Y, Yao X, Zhu J, Li Y, Zhang J, Zhou X, Qiao Y, Yang M, Li X (2017) Effects of yak-activated protein on hematopoiesis and related cytokines in radiation-induced injury in mice. Exp Ther Med 14(6):5297–5304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fazzino F, Obregón F, Lima L (2010) Taurine and proliferation of lymphocytes in physically restrained rats. J Biomed Sci 1(17 Suppl):S24

    Article  Google Scholar 

  • Goyer RA, Yin MW (1967) Taurine and creatine excretion after x-irradiation and plasmocid- induced muscle necrosis in the rat. Radiat Res 30:301–306

    Article  CAS  PubMed  Google Scholar 

  • Gridley DS, Makinde AY, Luo X, Rizvi A, Crapo JD, Dewhirst MW, Moeller BJ, Pearlstein RD, Slater JM (2007) Radiation and a metalloporphyrin radioprotectant in a mouse prostate tumor model. Anticancer Res 27(5A):3101–3109

    CAS  PubMed  Google Scholar 

  • Gürer H, Ozgünes H, Saygin E, Ercal N (2001) Antioxidant effect of taurine against lead-induced oxidative stress. Arch Environ Contam Toxicol 41(4):397–402

    Article  PubMed  Google Scholar 

  • Hansen SH (2001) The role of taurine in diabetes and the development of diabetic complications. Diabetes Metab Res Rev 17:330–346

    Article  CAS  PubMed  Google Scholar 

  • Johnson CH, Patterson AD, Krausz KW, Kalinich JF, Tyburski JB, Kang DW, Luecke H, Gonzalez FJ, Blakely WF, Idle JR (2012) Radiation metabolomics. 5. Identification of urinary biomarkers of ionizing radiation exposure in nonhuman primates by mass spectrometry-based metabolomics. Radiat Res 178:328–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jong CJ, Azuma J, Schaffer S (2012) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42(6):2223–2232

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Okita S, Wang S, Tsunekawa M, Ma N (2015) The effects of taurine administration against inflammation in heavily exercised skeletal muscle of rats. Adv Exp Med Biol 803:773–784

    Article  CAS  PubMed  Google Scholar 

  • Kumar KS, Srinivasan V, Toles R, Jobe L, Seed TM (2002) Nutritional approaches to radioprotection: vitamin E. Mil Med 167(2 Suppl):57–59

    PubMed  Google Scholar 

  • Kwon HM, Handler JS (1995) Cell volume regulated transporters of compatible osmolytes. Curr Opin Cell Biol 7:465–471

    Article  CAS  PubMed  Google Scholar 

  • Leach JK, Van Tuyle G, Lin PS, Schmidt-Ullrich R, Mikkelsen RB (2001) Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res. 15 61(10):3894–3901

    CAS  PubMed  Google Scholar 

  • Li Y, Kong S, Yang F, Xu W (2018) Protective effects of 2-amino-5,6-dihydro-4H-1,3-thiazine and its derivative against radiation-induced hematopoietic and intestinal injury in mice. Int J Mol Sci 21;19(5). pii: E1530

    Article  PubMed Central  Google Scholar 

  • Liu Y, Li F, Zhang L, Wu J, Wang Y, Yu H (2017) Taurine alleviates lipopolysaccharide? Induced liver injury by anti? Inflammation and antioxidants in rats. Mol Med Rep 16(5):6512–6517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma N, Sasoh M, Kawanishi S, Sugiura H, Piao F (2010) Protection effect of taurine on nitrosative stress in the mice brain with chronic exposure to arsenic. J Biomed Sci 17:S7

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagai K, Fukuno S, Oda A, Konishi H (2016) Protective effects of taurine on doxorubicin-induced acute hepatotoxicity through suppression of oxidative stress and apoptotic responses. Anti-Cancer Drugs 27(1):17–23

    Article  CAS  PubMed  Google Scholar 

  • Oliveira MW, Minotto JB, de Oliveira MR, Zanotto-Filho A, Behr GA, Rocha RF, Moreira JC, Klamt F (2010) Scavenging and antioxidant potential of physiological taurine concentrations against different reactive oxygen/nitrogen species. Pharmacol Rep 62:185–193

    Article  CAS  PubMed  Google Scholar 

  • Painuli S, Kumar N (2016) Prospects in the development of natural radioprotective therapeutics with anti-cancer properties from the plants of Uttarakhand region of India. J Ayurveda Integr Med 7(1):62–68

    Article  PubMed  PubMed Central  Google Scholar 

  • Petkau A (1987) Role of superoxide dismutase in modification of radiation injury. Br J Cancer Suppl 8:87–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu W, Carson-Walter EB, Liu H, Epperly M, Greenberger JS, Zambetti GP, Zhang L, Yu J (2008) PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome. Cell Stem Cell. 5 2(6):576–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen EM, Day R, Singh VK (2015) New approaches to radiation protection. Front Oncol 20(4):381

    Google Scholar 

  • Sato T, Kinoshita M, Yamamoto T, Ito M, Nishida T, Takeuchi M, Saitoh D, Seki S, Mukai Y (2015) Treatment of irradiated mice with high-dose ascorbic acid reduced lethality. PLoS One. 4 10(2):e0117020

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaffer SW, Azuma J, Mozaffari M (2009) Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol 87(2):91–99

    Article  CAS  PubMed  Google Scholar 

  • Singh VK, Singh PK, Wise SY, Posarac A, Fatanmi OO (2013) Radioprotective properties of tocopherol succinate against ionizing radiation in mice. J Radiat Res 54(2):210–220

    Article  CAS  PubMed  Google Scholar 

  • Smith TA, Kirkpatrick DR, Smith S, Smith TK, Pearson T, Kailasam A, Herrmann KZ, Schubert J, Agrawal DK (2017) Radioprotective agents to prevent cellular damage due to ionizing radiation. J Transl Med. 9 15(1):232

    Article  PubMed  PubMed Central  Google Scholar 

  • Suman S, Maniar M, Fornace AJ Jr, Datta K (2012) Administration of ON 01210.Na after exposure to ionizing radiation protects bone marrow cells by attenuating DNA damage response. Radiat Oncol 7:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szejk M, KoÅ‚odziejczyk-Czepas J, Å»bikowska HM (2016) Radioprotectors in radiotherapy – advances in the potential application of phytochemicals. Postepy Hig Med Dosw (Online). 30 70(0):722–734

    Article  Google Scholar 

  • Van der Meeren A, Monti P, Vandamme M, Squiban C, Wysocki J, Griffiths N (2005) Abdominal radiation exposure elicits inflammatory responses and abscopal effects in the lungs of mice. Radiat Res 163:144–152

    Article  PubMed  Google Scholar 

  • Veuger SJ, Hunter JE, Durkacz BW (2008) Ionizing radiation-induced NF-kappaB activation requires PARP-1 function to confer radioresistance. Oncogene. 12 28(6):832–842

    Article  PubMed  PubMed Central  Google Scholar 

  • Warskulat U, Reinen A, Grether-Beck S, Krutmann J, Häussinger D (2004) The osmolyte strategy of normal human keratinocytes in maintaining cell homeostasis. J Invest Dermatol 123:516–521

    Article  CAS  PubMed  Google Scholar 

  • Wasserman TH, Brizel DM (2001) The role of amifostine as a radioprotector. Oncology (Williston Park) 15(10):1349–1354. discussion 1357-60

    CAS  Google Scholar 

  • Watson GM (1962) The origin of taurine excreted in the urine after whole-body irradiation. Int J Radiat Biol 5:79–83

    CAS  Google Scholar 

  • Yamashita T, Kato T, Tunekawa M, Gu Y, Wang S, Ma N (2017) Effect of radiation on the expression of taurine transporter in the intestine of mouse. Adv Exp Med Biol 975:729–740

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Huang J, Xiao B, Liu Y, Zhu Y, Wang F, Sun S (2017) Taurine protects mouse spermatocytes from ionizing radiation-induced damage through activation of Nrf2/HO-1 signaling. Cell Physiol Biochem 44(4):1629–1639

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Goto S, Kawakatsu M, Urata Y, Li TS (2012) Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation. Free Radic Res 46(2):147–153

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yui Naganuma, Yusuke Hasegawa and Riki Miyabayashi for the handling of the animals and for assistance in the drug administration part of this work. This work was supported by JSPS KAKENHI Grant Number JP 17K15809 and in part of JP 17H04654.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yamashita, T., Kato, T., Isogai, T., Gu, Y., Ma, N. (2019). Protective Effects of Taurine on the Radiation Exposure Induced Cellular Damages in the Mouse Intestine. In: Hu, J., Piao, F., Schaffer, S., El Idrissi, A., Wu, JY. (eds) Taurine 11. Advances in Experimental Medicine and Biology, vol 1155. Springer, Singapore. https://doi.org/10.1007/978-981-13-8023-5_41

Download citation

Publish with us

Policies and ethics