Skip to main content

Microbiome in Liver Cirrhosis

  • Chapter
  • First Online:
The Evolving Landscape of Liver Cirrhosis Management

Abstract

Humans have a codependent relationship with gut microbiota. Changes in microbiota are proposed to be associated with various pathological conditions. New analyses facilitate the assessment and exhaustive search of these nonculturable bacteria. These new technologies also provide evidence of a relationship between gut microbiota and liver cirrhosis (LC).

Gut microbiota is closely involved in maintenance of the relationship between gut and liver in which commensal gut microbiota inhibits harmful bacteria, produces short-chain fatty acids to protect from mucosal infection, and metabolize bile acids to monitor the intestinal environment. Gut microbiota in patients with LC was different from that in healthy individuals due to dysbiosis regardless of background hepatitis status. In patients with LC, dysbiosis, small intestinal bacterial overgrowth, leaky gut syndrome, and immune paralysis of the gut-associated lymphoid tissue occurred, and the interaction between these induces a disruption of the gut–liver barrier. Dysfunction of the immune system induces translocation of harmful bacteria and endotoxin into the liver. Bacterial translocation worsens LC and contributes to complications such as hepatic encephalopathy, hepatocellular carcinoma, hepatorenal syndrome, and spontaneous bacterial peritonitis. Poorly absorbable antibiotics, probiotics, prebiotics, synbiotics, and fecal microbiota transplantations were reported as potential treatment interventions for dysbiosis in patients with LC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915–20.

    Article  CAS  PubMed  Google Scholar 

  2. Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312(5778):1355–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sekirov I, Finlay BB. Human and microbe: united we stand. Nat Med. 2006;12(7):736–7.

    Article  CAS  PubMed  Google Scholar 

  4. Wei X, Yan X, Zou D, et al. Abnormal fecal microbiota community and functions in patients with hepatitis B liver cirrhosis as revealed by a metagenomic approach. BMC Gastroenterol. 2013;13:175.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen Y, Qin N, Guo J, et al. Functional gene arrays based analysis of fecal microbiomes in patients with liver cirrhosis. BMC Genomics. 2014;15:753.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bajaj JS, Heuman DM, Hylemon PB, et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol. 2014;60(5):940–7.

    Article  CAS  PubMed  Google Scholar 

  7. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.

    Article  CAS  PubMed  Google Scholar 

  8. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.

    Article  CAS  PubMed  Google Scholar 

  9. Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120(7):1183–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014;146(6):1489–99.

    Article  CAS  PubMed  Google Scholar 

  11. Collins SM. A role for the gut microbiota in IBS. Nat Rev Gastroenterol Hepatol. 2014;11(8):497–505.

    Article  CAS  PubMed  Google Scholar 

  12. Li Q, Han Y, Dy ABC, Hagerman RJ. The gut microbiota and autism spectrum disorders. Front Cell Neurosci. 2017;11:120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods. 2012;9(8):811–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ramamurthy T, Ghosh A, Pazhani GP, Shinoda S. Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Front Public Health. 2014;2:103.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tortoli E. Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990s. Clin Microbiol Rev. 2003;16(2):319–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arab JP, Martin-Mateos RM, Shah VH. Gut–liver axis, cirrhosis and portal hypertension: the chicken and the egg. Hepatol Int. 2018;12(Suppl 1):24–33.

    Article  PubMed  Google Scholar 

  18. Kurokawa K, Itoh T, Kuwahara T, et al. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res. 2007;14(4):169–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nishijima S, Suda W, Oshima K, et al. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res. 2016;23(2):125–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aguirre Valadez JM, Rivera-Espinosa L, Méndez-Guerrero O, et al. Intestinal permeability in a patient with liver cirrhosis. Ther Clin Risk Manag. 2016;12:1729–48.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rescigno M, Urbano M, Valzasina B, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol. 2001;2(4):361–7.

    Article  CAS  PubMed  Google Scholar 

  22. Chairatana P, Nolan EM. Defensins, lectins, mucins, and secretory immunoglobulin A: microbe-binding biomolecules that contribute to mucosal immunity in the human gut. Crit Rev Biochem Mol Biol. 2017;52(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  23. Wells JM, Rossi O, Meijerink M, van Baarlen P. Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4607–14.

    Article  CAS  PubMed  Google Scholar 

  24. Schenk M, Mueller C. Adaptations of intestinal macrophages to an antigen-rich environment. Semin Immunol. 2007;19(2):84–93.

    Article  CAS  PubMed  Google Scholar 

  25. Geuking MB, Cahenzli J, Lawson MA, et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity. 2011;34(5):794–806.

    Article  CAS  PubMed  Google Scholar 

  26. Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–41.

    Article  CAS  PubMed  Google Scholar 

  27. Sun M, Wu W, Liu Z, et al. Microbiota metabolite short chain fatty acids, GCPR, and inflammatory bowel diseases. J Gastroenterol. 2017;52(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  28. Clausen MR, Mortensen PB. Kinetic studies on colonocyte metabolism of short chain fatty acids and glucose in ulcerative colitis. Gut. 1995;37(5):684–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hatayama H, Iwashita J, Kuwajima A, et al. The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T. Biochem Biophys Res Commun. 2007;356(3):599–603.

    Article  CAS  PubMed  Google Scholar 

  30. Brown AJ, Goldsworthy SM, Barnes AA, et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278(13):11312–9.

    Article  CAS  PubMed  Google Scholar 

  31. Le Poul E, Loison C, Struyf S, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem. 2003;278(28):25481–9.

    Article  CAS  PubMed  Google Scholar 

  32. Thomas C, Pellicciari R, Pruzanski M, et al. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov. 2008;7(8):678–93.

    Article  CAS  PubMed  Google Scholar 

  33. Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284(5418):1362–5.

    Article  CAS  PubMed  Google Scholar 

  34. Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;284(5418):1365–8.

    Article  CAS  PubMed  Google Scholar 

  35. Chiang JY. Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol. 2004;40(3):539–51.

    Article  CAS  PubMed  Google Scholar 

  36. Wiest R, Lawson M, Geuking M. Pathological bacterial translocation in liver cirrhosis. J Hepatol. 2014;60(1):197–209.

    Article  PubMed  Google Scholar 

  37. Butto LF, Schaubeck M, Haller D. Mechanisms of microbe-host interaction in Crohn’s diseases: Dysbiosis vs. pathobiont selection. Front Immunol. 2015;6:555.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. DeGruttola AK, Low D, Mizoguchi A, et al. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 2016;22(5):1137–50.

    Article  PubMed  Google Scholar 

  39. Bajaj JS, Betrapally NS, Gillevet PM. Decompensated cirrhosis and microbiome interpretation. Nature. 2015;525(7569):E1–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bajaj JS, Fagan A, Sikaroodi M, et al. Liver transplant modulates gut microbial dysbiosis and cognitive function in cirrhosis. Liver Transpl. 2017;23(7):907–14.

    Article  PubMed  Google Scholar 

  41. Qin N, Yang F, Li A, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513(7516):59–64.

    Article  CAS  PubMed  Google Scholar 

  42. Bauer TM, Steinbrifckner B, Brinkmann FE, et al. Small intestinal bacterial overgrowth in patients with cirrhosis: prevalence and relation with spontaneous bacterial peritonitis. Am J Gastroenterol. 2001;96(10):2962–7.

    Article  CAS  PubMed  Google Scholar 

  43. Bures J, Cyrany J, Kohoutova D, et al. Small intestinal bacterial overgrowth syndrome. World J Gastroenterol. 2010;16:2978–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Corazza GR, Menozzi MG, Strocchi A, et al. The diagnosis of small bowel bacterial overgrowth. Reliability of jejunal culture and inadequacy of breath hydrogen testing. Gastroenterology. 1990;98:302–9.

    Article  CAS  PubMed  Google Scholar 

  45. Salvo Romero E, Alonso Cotoner C, Pardo Camacho C, et al. The intestinal barrier function and its involvement in digestive disease. Rev Esp Enferm Dig. 2015;107(11):686–96.

    CAS  PubMed  Google Scholar 

  46. Mu Q, Kirby J, Reilly CM, Luo XM. Leaky gut as a danger signal for autoimmune diseases. Front Immunol. 2017;8:598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Yamashina S, Wheeler MD, Rusyn I, et al. Tolerance and sensitization to endotoxin in Kupffer cells caused by acute ethanol involve interleukin-1 receptor-associated kinase. Biochem Biophys Res Commun. 2000;277(3):686–90.

    Article  CAS  PubMed  Google Scholar 

  48. Haub S, Kanuri G, Volynets V, et al. Serotonin re-uptake transporter (SERT) plays a critical role in the onset of fructose-induced hepatic steatosis in mice. Am J Physiol Gastrointest Liver Physiol. 2010;298(3):G335–44.

    Article  CAS  PubMed  Google Scholar 

  49. Spruss A, Bergheim I. Dietary fructose and intestinal barrier: potential risk factor in the pathogenesis of nonalcoholic fatty liver disease. J Nutr Biochem. 2009;20:657–62.

    Article  CAS  PubMed  Google Scholar 

  50. Graham DY, Opekun AR, Willingham FF, Qureshi WA. Visible small-intestinal mucosal injury in chronic NSAID users. Clin Gastroenterol Hepatol. 2005;3(1):55–9.

    Article  PubMed  Google Scholar 

  51. Watanabe T, Sugimori S, Kameda N, et al. Small bowel injury by low-dose enteric-coated aspirin and treatment with misoprostol: a pilot study. Clin Gastroenterol Hepatol. 2008;6(11):1279–82.

    Article  PubMed  Google Scholar 

  52. Betrapally NS, Gillevet PM, Bajaj JS. Changes in the intestinal microbiome and alcoholic and nonalcoholic liver diseases: causes or effects? Gastroenterology. 2016;150(8):1745–55.

    Article  PubMed  Google Scholar 

  53. Gonzalez-Quintela A, Campos J, Gude F, et al. Serum concentrations of interleukin-8 in relation to different levels of alcohol consumption. Cytokine. 2007;38(1):54–60.

    Article  CAS  PubMed  Google Scholar 

  54. Ishikawa M, Uemura M, Matsuyama T, et al. Potential role of enhanced cytokinemia and plasma inhibitor on the decreased activity of plasma ADAMTS13 in patients with alcoholic hepatitis: relationship to endotoxemia. Alcohol Clin Exp Res. 2010;34(Suppl 1):S25–33.

    Article  CAS  PubMed  Google Scholar 

  55. Creely SJ, McTernan PG, Kusminski CM, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292(3):E740–7.

    Article  CAS  PubMed  Google Scholar 

  56. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72.

    Article  CAS  PubMed  Google Scholar 

  57. Pendyala S, Walker JM, Holt PR. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology. 2012;142(5):1100–1.

    Article  CAS  PubMed  Google Scholar 

  58. Seki E, De Minicis S, Osterreicher CH, et al. TLR4 enhances TGF–beta signaling and hepatic fibrosis. Nat Med. 2007;13(11):1324–32.

    Article  CAS  PubMed  Google Scholar 

  59. Dapito DH, Mencin A, Gwak GY, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 2012;21(4):504–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ley RE, Bäckhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Payne CM, Weber C, Crowley-Skillicorn C, et al. Deoxycholate induces mitochondrial oxidative stress and activates NF-kappaB through multiple mechanisms in HCT-116 colon epithelial cells. Carcinogenesis. 2007;28(1):215–22.

    Article  CAS  PubMed  Google Scholar 

  62. Yoshimoto S, Loo TM, Atarashi K, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499(7456):97–101.

    Article  CAS  PubMed  Google Scholar 

  63. Ciećko-Michalska I, Szczepanek M, Słowik A, Mach T. Pathogenesis of hepatic encephalopathy. Gastroenterol Res Pract. 2012;2012:642108.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Collins CM, D’Orazio SE. Bacterial ureases: structure, regulation of expression and role in pathogenesis. Mol Microbiol. 1993;9(5):907–13.

    Article  CAS  PubMed  Google Scholar 

  65. Rai R, Saraswat VA, Dhiman RK. Gut microbiota: its role in hepatic encephalopathy. J Clin Exp Hepatol. 2015;5(Suppl 1):S29–36.

    Article  PubMed  Google Scholar 

  66. Ferenci P, Lockwood A, Mullen K, et al. Hepatic encephalopathy--definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology. 2002;35(3):716–21.

    Article  PubMed  Google Scholar 

  67. Bajaj JS, Ridlon JM, Hylemon PB, et al. Linkage of gut microbiome with cognition in hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol. 2012;302(1):G168–75.

    Article  CAS  PubMed  Google Scholar 

  68. Singal AK, Salameh H, Kamath PS. Prevalence and in-hospital mortality trends of infections among patients with cirrhosis: a nationwide study of hospitalised patients in the United States. Aliment Pharmacol Ther. 2014;40:105–12.

    Article  CAS  PubMed  Google Scholar 

  69. Giannelli V, Di gregorio V, Iebba V, et al. Microbiota and the gut-liver axis: bacterial translocation, inflammation and infection in cirrhosis. World J Gastroenterol. 2014;20(45):16795–810.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Guarner C, Runyon BA, Young S, et al. Intestinal bacterial overgrowth and bacterial translocation in cirrhotic rats with ascites. J Hepatol. 1997;26(6):1372–8.

    Article  CAS  PubMed  Google Scholar 

  71. Scarpignato C, Pelosini I. Rifaximin, a poorly absorbed antibiotic: pharmacology and clinical potential. Chemotherapy. 2005;51(Suppl 1):36–66.

    Article  CAS  PubMed  Google Scholar 

  72. Bass NM, Mullen KD, Sanyal A, et al. Rifaximin treatment in hepatic encephalopathy. N Engl J Med. 2010;362(12):1071–81.

    Article  CAS  PubMed  Google Scholar 

  73. Kamal F, Khan MA, Khan Z, et al. Rifaximin for the prevention of spontaneous bacterial peritonitis and hepatorenal syndrome in cirrhosis: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2017;29(10):1109–17.

    Article  CAS  PubMed  Google Scholar 

  74. Dong T, Aronsohn A, Gautham Reddy K, Te HS. Rifaximin decreases the incidence and severity of acute kidney injury and hepatorenal syndrome in cirrhosis. Dig Dis Sci. 2016;61(12):3621–6.

    Article  CAS  PubMed  Google Scholar 

  75. Kaji K, Takaya H, Saikawa S, et al. Rifaximin ameliorates hepatic encephalopathy and endotoxemia without affecting the gut microbiome diversity. World J Gastroenterol. 2017;23(47):8355–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vanjak D, Girault G, Branger C, Rufat P, Valla DC, Fantin B. Risk factors for Clostridium difficile infection in a hepatology ward. Infect Control Hosp Epidemiol. 2007;28(2):202–4.

    Article  PubMed  Google Scholar 

  77. Lunia MK, Sharma BC, Sharma P, Sachdeva S, Srivastava S. Probiotics prevent hepatic encephalopathy in patients with cirrhosis: a randomized controlled trial. Clin Gastroenterol Hepatol. 2014;12(6):1003–8.

    Article  PubMed  Google Scholar 

  78. Dhiman RK, Rana B, Agrawal S, et al. Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized, controlled trial. Gastroenterology. 2014;147(6):1327–37.

    Article  CAS  PubMed  Google Scholar 

  79. Sharma P, Agrawal A, Sharma BC, Sarin SK. Prophylaxis of hepatic encephalopathy in acute variceal bleed: a randomized controlled trial of lactulose versus no lactulose. J Gastroenterol Hepatol. 2011;26(6):996–1003.

    Article  PubMed  Google Scholar 

  80. Liu Q, Duan ZP, Ha DK, et al. Synbiotic modulation of gut flora: effect on minimal hepatic encephalopathy in patients with cirrhosis. Hepatology. 2004;39(5):1441–9.

    Article  PubMed  Google Scholar 

  81. Kelly CR, Kahn S, Kashyap P, et al. Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology. 2015;149(1):223–37.

    Article  PubMed  Google Scholar 

  82. Bajaj JS, Kassam Z, Fagan A, et al. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology. 2017;66(6):1727–38.

    Article  CAS  PubMed  Google Scholar 

  83. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385(9972):956–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuji Terai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sakamaki, A., Takamura, M., Terai, S. (2019). Microbiome in Liver Cirrhosis. In: Yoshiji, H., Kaji, K. (eds) The Evolving Landscape of Liver Cirrhosis Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-7979-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7979-6_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7663-4

  • Online ISBN: 978-981-13-7979-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics