Skip to main content

Track Structure and Microdosimetry of Proton Beams

  • Chapter
  • First Online:
Proton Beam Radiotherapy
  • 967 Accesses

Abstract

Energy is deposited in matter by ionizing radiations through atomic interactions such as ionization and excitation. Over the past several decades, studies have investigated the microscopic distribution of such energy deposition events on the trajectory of ionizing radiations, known as track structure, and the influence on the relative biological effectiveness (RBE). Specifically, these are microdosimetry studies, which are generally distinguished from conventional dosimetry due to the need to consider the stochastic nature of energy depositions. Thus, two stochastic quantities specially used in microdosimetry (i.e., specific and lineal energies) were defined and measured. These were used instead of the corresponding nonstochastic quantities generally utilized in conventional dosimetry (i.e., absorbed dose and linear energy transfer (LET)). The use of such microdosimetric quantities as index for expressing the radiation fields has brought to the development of numerous models for RBE estimation of charged particle therapy. Of note, a subset of these has already been implemented in carbon-ion therapy’s treatment planning. In this chapter, we review the definitions of microdosimetric quantities. For discussion, we present examples of calculated track structures and microdosimetric quantities of several monoenergetic radiations. Additionally, we briefly review and summarize past studies on the applications of microdosimetry in proton therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rossi HH (1959) Specification of radiation quality. Radiat Res 10:522–531

    Article  CAS  Google Scholar 

  2. Rossi HH (1960) Spatial distribution of energy deposition by ionizing radiation. Radiat Res Suppl. 2:290–299

    PubMed  Google Scholar 

  3. International Commission on Radiation Units and Measurements (1983) Microdosimetry. ICRU Report 36

    Google Scholar 

  4. International Commission on Radiation Units and Measurements (1986) The quality factor in radiation protection. ICRU Report 40

    Google Scholar 

  5. Nikjoo H, Uehara S, Khvostunov IG, Cucinotta FA, Wilson WE, Goodhead DT (2001) Monte Carlo track structure for radiation biology and space applications. Phys Med 17:38–44

    PubMed  Google Scholar 

  6. Watanabe R, Wada S, Funayama T, Kobayashi Y, Saito K, Furusawa Y (2011) Monte carlo simulation of radial distribution of DNA strand breaks along the C and ne ion paths. Radiat Prot Dosim 143(2–4):186–190. https://doi.org/10.1093/rpd/ncq539

    Article  CAS  Google Scholar 

  7. Plante I (2011) A Monte-Carlo step-by-step simulation code of the non-homogeneous chemistry of the radiolysis of water and aqueous solutions. Part I: theoretical framework and implementation. Radiat Environ Biophys 50(3):389–403. https://doi.org/10.1007/s00411-011-0367-8

    Article  CAS  PubMed  Google Scholar 

  8. Plante I (2011) A Monte-Carlo step-by-step simulation code of the non-homogeneous chemistry of the radiolysis of water and aqueous solutions-part II: calculation of radiolytic yields under different conditions of LET, pH, and temperature. Radiat Environ Biophys 50(3):405–415. https://doi.org/10.1007/s00411-011-0368-7

    Article  CAS  PubMed  Google Scholar 

  9. Friedland W, Dingfelder M, Kundrat P, Jacob P (2011) Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat Res Fund Mol M 711(1–2):28–40. https://doi.org/10.1016/j.mrfmmm.2011.01.003

    Article  CAS  Google Scholar 

  10. Nikjoo H, Uehara S, Emfietzoglou D, Cucinotta FA (2006) Track-structure codes in radiation research. Radiat Meas 41(9–10):1052–1074. https://doi.org/10.1016/j.radmeas.2006.02.001

    Article  CAS  Google Scholar 

  11. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P et al (2003) GEANT4-a simulation toolkit. Nucl Instrum Meth A 506(3):250–303. https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  CAS  Google Scholar 

  12. Sato T, Niita K, Matsuda N, Hashimoto S, Iwamoto Y, Noda S et al (2013) Particle and heavy ion transport code system, PHITS, version 2.52. J Nucl Sci Technol 50(9):913–923. https://doi.org/10.1080/00223131.2013.814553

    Article  CAS  Google Scholar 

  13. Bernal MA, Bordage MC, Brown JMC, Davidkova M, Delage E, El Bitar Z et al (2015) Track structure modeling in liquid water: a review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Phys Med 31(8):861–874. https://doi.org/10.1016/j.ejmp.2015.10.087

    Article  CAS  PubMed  Google Scholar 

  14. Sato T, Watanabe R, Niita K (2006) Development of a calculation method for estimating specific energy distribution in complex radiation fields. Radiat Prot Dosim 122(1–4):41–45

    Article  Google Scholar 

  15. Sato T, Kase Y, Watanabe R, Niita K, Sihver L (2009) Biological dose estimation for charged-particle therapy using an improved PHITS code coupled with a microdosimetric kinetic model. Radiat Res 171(1):107–117. https://doi.org/10.1667/Rr1510.1

    Article  CAS  PubMed  Google Scholar 

  16. Polster L, Schuemann J, Rinaldi I, Burigo L, McNamara AL, Stewart RD et al (2015) Extension of TOPAS for the simulation of proton radiation effects considering molecular and cellular endpoints. Phys Med Biol 60(13):5053–5070. https://doi.org/10.1088/0031-9155/60/13/5053

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sato T, Furusawa Y (2012) Cell survival fraction estimation based on the probability densities of domain and cell nucleus specific energies using improved microdosimetric kinetic models. Radiat Res 178(4):341–356. https://doi.org/10.1667/Rr2842.1

    Article  CAS  PubMed  Google Scholar 

  18. Butts JJ, Katz R (1967) Theory of RBE for heavy ion bombardment of dry enzymes and viruses. Radiat Res 30:855–871

    Article  CAS  Google Scholar 

  19. Hawkins RB (1996) A microdosimetric-kinetic model of cell death from exposure to ionizing radiation of any LET, with experimental and clinical applications. Int J Radiat Biol 69(6):739–755. https://doi.org/10.1080/095530096145481

    Article  CAS  PubMed  Google Scholar 

  20. Inaniwa T, Furukawa T, Kase Y, Matsufuji N, Toshito T, Matsumoto Y et al (2010) Treatment planning for a scanned carbon beam with a modified microdosimetric kinetic model. Phys Med Biol 55(22):6721–6737. https://doi.org/10.1088/0031-9155/55/22/008

    Article  PubMed  Google Scholar 

  21. Friedrich T, Scholz U, Elsasser T, Durante M, Scholz M (2012) Calculation of the biological effects of ion beams based on the microscopic spatial damage distribution pattern. Int J Radiat Biol 88(1–2):103–107. https://doi.org/10.3109/09553002.2011.611213

    Article  CAS  PubMed  Google Scholar 

  22. Paganetti H, Niemierko A, Ancukiewicz M, Gerweck LE, Goitein M, Loeffler JS et al (2002) Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys 53(2):407–421. https://doi.org/10.1016/S0360-3016(02)02754-2. Pii S0360-3016(02)02754-2

    Article  Google Scholar 

  23. Paganetti H (2014) Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol 59(22):R419–RR72. https://doi.org/10.1088/0031-9155/59/22/R419

    Article  Google Scholar 

  24. Paganetti H, Olko P, Kobus H, Becker R, Schmitz T, Waligorski MPR et al (1997) Calculation of relative biological effectiveness for proton beams using biological weighting functions. Int J Radiat Oncol Biol Phys 37(3):719–729. https://doi.org/10.1016/S0360-3016(96)00540-8

    Article  CAS  PubMed  Google Scholar 

  25. Coutrakon G, Cortese J, Ghebremedhin A, Hubbard J, Johanning J, Koss P et al (1997) Microdosimetry spectra of the Loma Linda proton beam and relative biological effectiveness comparisons. Med Phys 24(9):1499–1506. https://doi.org/10.1118/1.598038

    Article  CAS  PubMed  Google Scholar 

  26. Kase Y, Yamashita W, Matsufuji N, Takada K, Sakae T, Furusawa Y et al (2013) Microdosimetric calculation of relative biological effectiveness for design of therapeutic proton beams. J Radiat Res 54:485–493. https://doi.org/10.1093/jrr/rrt099

    Article  CAS  Google Scholar 

  27. Takada K, Sato T, Kumada H, Koketsu J, Takei H, Sakurai H, Sakae T (2018) Validation of the physical and RBE-weighted dose estimator based on PHITS coupled with a microdosimetric kinetic model for proton therapy. Journal of Radiation Research 59(1):91–99

    Article  Google Scholar 

Download references

Acknowledgments

The author is grateful to Dr. Kenta Takada of Gunma Prefectural College of Health Sciences and Dr. Yuki Kase of Shizuoka Cancer Center for their support for simulating the beam line of Proton Beam Center of the University of Tsukuba Hospital using PHITS, and Dr. Ianik Plante of the National Aeronautics and Space Administration (NASA) for his advice for using RITRACKS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuhiko Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sato, T. (2020). Track Structure and Microdosimetry of Proton Beams. In: Tsuboi, K., Sakae, T., Gerelchuluun, A. (eds) Proton Beam Radiotherapy. Springer, Singapore. https://doi.org/10.1007/978-981-13-7454-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7454-8_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7453-1

  • Online ISBN: 978-981-13-7454-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics