Skip to main content

DNA Damage, Repair Mechanisms, and Chromosomal Aberrations

  • Chapter
  • First Online:
Proton Beam Radiotherapy
  • 1070 Accesses

Abstract

Cells encounter DNA damage induced by both endogenous and exogenous factors, and have evolved damage-specific repair pathways. DNA is an important of target radiation. The most significant types of DNA damage are base lesions, single-strand breaks, and double-strand breaks. Any of these types of damage acts as a substrate for the specific repair pathway. Cells that are not able to properly repair DNA damage undergo cell death or the unrepaired and imprecisely repaired DNA damage can cause of mutations and chromosomal aberrations. Proton beams (PBs) induce DNA damage and majorityof them are repaired without significant biological consequences. However, some DNA damage is more difficult to repair and leads to cell death. Understanding the cascading events in both normal and cancer cells after exposure to PBs is crucial for the development of efficient PB-based therapies and successful space missions. The focus of the current chapter is PB-induced DNA damage and related repair pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vysin L, Pachnerova Brabcova K, Stepan V, Moretto-Capelle P, Bugler B, Legube G et al (2015) Proton-induced direct and indirect damage of plasmid DNA. Radiat Environ Biophys 54(3):343–352. https://doi.org/10.1007/s00411-015-0605-6

    Article  CAS  PubMed  Google Scholar 

  2. Zenkoh J, Gerelchuluun A, Wang Y, Miwa Y, Ohno T, Tsuboi K (2017) The abscopal effect induced by in situ -irradiated peripheral tumor cells in a murine GL261 brain tumor model. Transl Cancer Res 6(1):136–148

    Article  CAS  Google Scholar 

  3. Edwards AA, Lloyd DC, Prosser JS, Finnon P, Moquet JE (1986) Chromosome aberrations induced in human lymphocytes by 8.7 MeV protons and 23.5 MeV helium-3 ions. Int J Radiat Biol Relat Stud Phys Chem Med 50(1):137–145

    Article  CAS  PubMed  Google Scholar 

  4. Mitteer RA, Wang YL, Shah J, Gordon S, Fager M, Butter PP et al (2015) Proton beam radiation induces DNA damage and cell apoptosis in glioma stem cells through reactive oxygen species. Sci Rep 5:13961. https://doi.org/10.1038/Srep13961

    Article  Google Scholar 

  5. Hong Z, Kase Y, Moritake T, Gerelchuluun A, Sun L, Suzuki K et al (2013) Lineal energy-based evaluation of oxidative DNA damage induced by proton beams and X-rays. Int J Radiat Biol 89(1):36–43. https://doi.org/10.3109/09553002.2012.715791

    Article  CAS  PubMed  Google Scholar 

  6. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362(6422):709–715. https://doi.org/10.1038/362709a0

    Article  CAS  PubMed  Google Scholar 

  7. Dalhus B, Laerdahl JK, Backe PH, Bjoras M (2009) DNA base repair--recognition and initiation of catalysis. FEMS Microbiol Rev 33(6):1044–1078. https://doi.org/10.1111/j.1574-6976.2009.00188.x

    Article  CAS  PubMed  Google Scholar 

  8. Maki H, Sekiguchi M (1992) MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 355(6357):273–275. https://doi.org/10.1038/355273a0

    Article  CAS  PubMed  Google Scholar 

  9. Tommasino F, Durante M (2015) Proton Radiobiology. Cancer 7(1):353

    Article  CAS  Google Scholar 

  10. Chaudhary P, Marshall TI, Currell FJ, Kacperek A, Schettino G, Prise KM (2016) Variations in the processing of DNA double-strand breaks along 60-MeV therapeutic proton beams. Int J Radiat Oncol Biol Phys 95(1):86–94. https://doi.org/10.1016/j.ijrobp.2015.07.2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wouters BG, Skarsgard LD, Gerweck LE, Carabe-Fernandez A, Wong M, Durand RE et al (2015) Radiobiological intercomparison of the 160 MeV and 230 MeV proton therapy beams at the Harvard Cyclotron Laboratory and at Massachusetts General Hospital (vol 183, pg 174, 2015). Radiat Res 183(4):E51. https://doi.org/10.1667/RROL13.1

    Article  Google Scholar 

  12. Gerelchuluun A, Hong Z, Sun L, Suzuki K, Terunuma T, Yasuoka K et al (2011) Induction of in situ DNA double-strand breaks and apoptosis by 200 MeV protons and 10 MV X-rays in human tumour cell lines. Int J Radiat Biol 87(1):57–70. https://doi.org/10.3109/09553002.2010.518201

    Article  CAS  PubMed  Google Scholar 

  13. George KA, Hada M, Chappell L, Cucinotta FA (2013) Biological effectiveness of accelerated particles for the induction of chromosome damage: track structure effects. Radiat Res 180(1):25–33. https://doi.org/10.1667/RR3291.1

    Article  CAS  PubMed  Google Scholar 

  14. Ibanez IL, Bracalente C, Molinari BL, Palmieri MA, Policastro L, Kreiner AJ et al (2009) Induction and rejoining of DNA double strand breaks assessed by H2AX phosphorylation in melanoma cells irradiated with proton and lithium beams. Int J Radiat Oncol Biol Phys 74(4):1226–1235. https://doi.org/10.1016/j.ijrobp.2009.02.070

    Article  CAS  PubMed  Google Scholar 

  15. Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15(17):2177–2196. https://doi.org/10.1101/gad.914401

    Article  CAS  PubMed  Google Scholar 

  16. Marechal A, Zou L (2013) DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol 5(9):a012716. https://doi.org/10.1101/cshperspect.a012716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. College O. Control of the cell cycle.. OpneStax CNX. 2015.

    Google Scholar 

  18. Lim S, Kaldis P (2013) Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140(15):3079–3093. https://doi.org/10.1242/dev.091744

    Article  CAS  PubMed  Google Scholar 

  19. Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J (2001) The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410(6830):842–847. https://doi.org/10.1038/35071124

    Article  CAS  PubMed  Google Scholar 

  20. Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D (1999) Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci U S A 96(26):14973–14977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H et al (2000) DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287(5459):1824–1827

    Article  CAS  PubMed  Google Scholar 

  22. Ferretti LP, Lafranchi L, Sartori AA (2013) Controlling DNA-end resection: a new task for CDKs. Front Genet 4:99. https://doi.org/10.3389/fgene.2013.00099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tomimatsu N, Mukherjee B, Catherine Hardebeck M, Ilcheva M, Vanessa Camacho C, Louise Harris J et al (2014) Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice. Nat Commun 5:3561. https://doi.org/10.1038/ncomms4561

    Article  CAS  PubMed  Google Scholar 

  24. Green LM, Murray DK, Bant AM, Kazarians G, Moyers MF, Nelson GA et al (2001) Response of thyroid follicular cells to gamma irradiation compared to proton irradiation. I. Initial characterization of DNA damage, micronucleus formation, apoptosis, cell survival, and cell cycle phase redistribution. Radiat Res 155(1 Pt 1):32–42

    Article  CAS  PubMed  Google Scholar 

  25. Yu S, Evans K, van Eijk P, Bennett M, Webster RM, Leadbitter M et al (2016) Global genome nucleotide excision repair is organized into domains that promote efficient DNA repair in chromatin. Genome Res 26(10):1376–1387. https://doi.org/10.1101/gr.209106.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakanishi S, Prasad R, Wilson SH, Smerdon M (2007) Different structural states in oligonucleosomes are required for early versus late steps of base excision repair. Nucleic Acids Res 35(13):4313–4321. https://doi.org/10.1093/nar/gkm436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carter RJ, Parsons JL (2016) Base excision repair, a pathway regulated by posttranslational modifications. Mol Cell Biol 36(10):1426–1437. https://doi.org/10.1128/MCB.00030-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xie Y, Yang H, Cunanan C, Okamoto K, Shibata D, Pan J et al (2004) Deficiencies in mouse Myh and Ogg1 result in tumor predisposition and G to T mutations in codon 12 of the K-ras oncogene in lung tumors. Cancer Res 64(9):3096–3102

    Article  CAS  PubMed  Google Scholar 

  29. Krokan HE, Bjoras M (2013) Base excision repair. Cold Spring Harb Perspect Biol 5(4):a012583. https://doi.org/10.1101/cshperspect.a012583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jacobs AL, Schar P (2012) DNA glycosylases: in DNA repair and beyond. Chromosoma 121(1):1–20. https://doi.org/10.1007/s00412-011-0347-4

    Article  CAS  PubMed  Google Scholar 

  31. Tell G, Quadrifoglio F, Tiribelli C, Kelley MR (2009) The many functions of APE1/Ref-1: not only a DNA repair enzyme. Antioxid Redox Signal 11(3):601–620. https://doi.org/10.1089/ars.2008.2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Doetsch PW, Cunningham RP (1990) The enzymology of apurinic/apyrimidinic endonucleases. Mutat Res 236(2-3):173–201

    Article  CAS  PubMed  Google Scholar 

  33. Svilar D, Goellner EM, Almeida KH, Sobol RW (2011) Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid Redox Signal 14(12):2491–2507. https://doi.org/10.1089/ars.2010.3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sobol RW, Wilson SH (2001) Mammalian DNA beta-polymerase in base excision repair of alkylation damage. Prog Nucleic Acid Res Mol Biol 68:57–74

    Article  CAS  PubMed  Google Scholar 

  35. Akbari M, Pena-Diaz J, Andersen S, Liabakk NB, Otterlei M, Krokan HE (2009) Extracts of proliferating and non-proliferating human cells display different base excision pathways and repair fidelity. DNA Repair 8(7):834–843. https://doi.org/10.1016/j.dnarep.2009.04.002

    Article  CAS  PubMed  Google Scholar 

  36. Matsumoto Y, Kim K (1995) Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science 269(5224):699–702

    Article  CAS  PubMed  Google Scholar 

  37. Podlutsky AJ, Dianova II, Podust VN, Bohr VA, Dianov GL (2001) Human DNA polymerase beta initiates DNA synthesis during long-patch repair of reduced AP sites in DNA. EMBO J 20(6):1477–1482. https://doi.org/10.1093/emboj/20.6.1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Craggs TD, Hutton RD, Brenlla A, White MF, Penedo JC (2014) Single-molecule characterization of Fen1 and Fen1/PCNA complexes acting on flap substrates. Nucleic Acids Res 42(3):1857–1872. https://doi.org/10.1093/nar/gkt1116

    Article  CAS  PubMed  Google Scholar 

  39. Gao Y, Katyal S, Lee Y, Zhao J, Rehg JE, Russell HR et al (2011) DNA ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair. Nature 471(7337):240–244. https://doi.org/10.1038/nature09773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sugasawa K, Okamoto T, Shimizu Y, Masutani C, Iwai S, Hanaoka F (2001) A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev 15(5):507–521. https://doi.org/10.1101/gad.866301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Scrima A, Konickova R, Czyzewski BK, Kawasaki Y, Jeffrey PD, Groisman R et al (2008) Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex. Cell 135(7):1213–1223. https://doi.org/10.1016/j.cell.2008.10.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yeh JI, Levine AS, Du S, Chinte U, Ghodke H, Wang H et al (2012) Damaged DNA induced UV-damaged DNA-binding protein (UV-DDB) dimerization and its roles in chromatinized DNA repair. Proc Natl Acad Sci U S A 109(41):E2737–E2746. https://doi.org/10.1073/pnas.1110067109

    Article  PubMed  PubMed Central  Google Scholar 

  43. Evans E, Moggs JG, Hwang JR, Egly JM, Wood RD (1997) Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J 16(21):6559–6573. https://doi.org/10.1093/emboj/16.21.6559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tapias A, Auriol J, Forget D, Enzlin JH, Scharer OD, Coin F et al (2004) Ordered conformational changes in damaged DNA induced by nucleotide excision repair factors. J Biol Chem 279(18):19074–19083. https://doi.org/10.1074/jbc.M312611200

    Article  CAS  PubMed  Google Scholar 

  45. Saijo M, Takedachi A, Tanaka K (2011) Nucleotide excision repair by mutant xeroderma pigmentosum group A (XPA) proteins with deficiency in interaction with RPA. J Biol Chem 286(7):5476–5483. https://doi.org/10.1074/jbc.M110.172916

    Article  CAS  PubMed  Google Scholar 

  46. Saijo M, Matsuda T, Kuraoka I, Tanaka K (2004) Inhibition of nucleotide excision repair by anti-XPA monoclonal antibodies which interfere with binding to RPA, ERCC1, and TFIIH. Biochem Biophys Res Commun 321(4):815–822. https://doi.org/10.1016/j.bbrc.2004.07.030

    Article  CAS  PubMed  Google Scholar 

  47. Li L, Peterson CA, Lu X, Legerski RJ (1995) Mutations in XPA that prevent association with ERCC1 are defective in nucleotide excision repair. Mol Cell Biol 15(4):1993–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fagbemi AF, Orelli B, Scharer OD (2011) Regulation of endonuclease activity in human nucleotide excision repair. DNA Repair 10(7):722–729. https://doi.org/10.1016/j.dnarep.2011.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. O’Donovan A, Davies AA, Moggs JG, West SC, Wood RD (1994) XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature 371(6496):432–435. https://doi.org/10.1038/371432a0

    Article  PubMed  Google Scholar 

  50. Sijbers AM, van der Spek PJ, Odijk H, van den Berg J, van Duin M, Westerveld A et al (1996) Mutational analysis of the human nucleotide excision repair gene ERCC1. Nucleic Acids Res 24(17):3370–3380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gerelchuluun A, Manabe E, Ishikawa T, Sun L, Itoh K, Sakae T et al (2015) The major DNA repair pathway after both proton and carbon-ion radiation is NHEJ, but the HR pathway is more relevant in carbon ions. Radiat Res 183(3):345–356. https://doi.org/10.1667/RR13904.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Daley JM, Wilson TE (2005) Rejoining of DNA double-strand breaks as a function of overhang length. Mol Cell Biol 25(3):896–906. https://doi.org/10.1128/MCB.25.3.896-906.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rothkamm K, Kruger I, Thompson LH, Lobrich M (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23(16):5706–5715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dibiase SJ, Zeng ZC, Chen R, Hyslop T, Curran WJ, Iliakis G (2000) DNA-dependent protein kinase stimulates an independently active, nonhomologous, end-joining apparatus. Cancer Res 60(5):1245–1253

    CAS  PubMed  Google Scholar 

  55. Cheng Q, Barboule N, Frit P, Gomez D, Bombarde O, Couderc B et al (2011) Ku counteracts mobilization of PARP1 and MRN in chromatin damaged with DNA double-strand breaks. Nucleic Acids Res 39(22):9605–9619. https://doi.org/10.1093/nar/gkr656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mimitou EP, Symington LS (2010) Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2. EMBO J 29(19):3358–3369. https://doi.org/10.1038/emboj.2010.193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Clerici M, Mantiero D, Guerini I, Lucchini G, Longhese MP (2008) The Yku70-Yku80 complex contributes to regulate double-strand break processing and checkpoint activation during the cell cycle. EMBO Rep 9(8):810–818. https://doi.org/10.1038/embor.2008.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ma Y, Pannicke U, Schwarz K, Lieber MR (2002) Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108(6):781–794

    Article  CAS  PubMed  Google Scholar 

  59. Niewolik D, Pannicke U, Lu H, Ma Y, Wang LC, Kulesza P et al (2006) DNA-PKcs dependence of Artemis endonucleolytic activity, differences between hairpins and 5′ or 3′ overhangs. J Biol Chem 281(45):33900–33909. https://doi.org/10.1074/jbc.M606023200

    Article  CAS  PubMed  Google Scholar 

  60. Mahajan KN, Nick McElhinny SA, Mitchell BS, Ramsden DA (2002) Association of DNA polymerase mu (pol mu) with Ku and ligase IV: role for pol mu in end-joining double-strand break repair. Mol Cell Biol 22(14):5194–5202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee JW, Blanco L, Zhou T, Garcia-Diaz M, Bebenek K, Kunkel TA et al (2004) Implication of DNA polymerase lambda in alignment-based gap filling for nonhomologous DNA end joining in human nuclear extracts. J Biol Chem 279(1):805–811. https://doi.org/10.1074/jbc.M307913200

    Article  CAS  PubMed  Google Scholar 

  62. Ma Y, Lu H, Tippin B, Goodman MF, Shimazaki N, Koiwai O et al (2004) A biochemically defined system for mammalian nonhomologous DNA end joining. Mol Cell 16(5):701–713. https://doi.org/10.1016/j.molcel.2004.11.017

    Article  CAS  PubMed  Google Scholar 

  63. Nick McElhinny SA, Snowden CM, McCarville J, Ramsden DA (2000) Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol Cell Biol 20(9):2996–3003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jeggo PA, Geuting V, Lobrich M (2011) The role of homologous recombination in radiation-induced double-strand break repair. Radiother Oncol 101(1):7–12. https://doi.org/10.1016/j.radonc.2011.06.019

    Article  CAS  PubMed  Google Scholar 

  65. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276(45):42462–42467. https://doi.org/10.1074/jbc.C100466200

    Article  CAS  PubMed  Google Scholar 

  66. Shibata A, Moiani D, Arvai AS, Perry J, Harding SM, Genois MM et al (2014) DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities. Mol Cell 53(1):7–18. https://doi.org/10.1016/j.molcel.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  67. Kakarougkas A, Ismail A, Katsuki Y, Freire R, Shibata A, Jeggo PA (2013) Co-operation of BRCA1 and POH1 relieves the barriers posed by 53BP1 and RAP80 to resection. Nucleic Acids Res 41(22):10298–10311. https://doi.org/10.1093/nar/gkt802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chapman JR, Sossick AJ, Boulton SJ, Jackson SP (2012) BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair. J Cell Sci 125(Pt 15):3529–3534. https://doi.org/10.1242/jcs.105353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. McVey M, Lee SE (2008) MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet 24(11):529–538. https://doi.org/10.1016/j.tig.2008.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nussenzweig A, Nussenzweig MC (2007) A backup DNA repair pathway moves to the forefront. Cell 131(2):223–225. https://doi.org/10.1016/j.cell.2007.10.005

    Article  CAS  PubMed  Google Scholar 

  71. Truong LN, Li Y, Shi LZ, Hwang PY, He J, Wang H et al (2013) Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc Natl Acad Sci U S A 110(19):7720–7725. https://doi.org/10.1073/pnas.1213431110

    Article  PubMed  PubMed Central  Google Scholar 

  72. Tartier L, Spenlehauer C, Newman HC, Folkard M, Prise KM, Michael BD et al (2003) Local DNA damage by proton microbeam irradiation induces poly(ADP-ribose) synthesis in mammalian cells. Mutagenesis 18(5):411–416

    Article  CAS  PubMed  Google Scholar 

  73. Zhang Y, Jasin M (2011) An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat Struct Mol Biol 18(1):80–84. https://doi.org/10.1038/nsmb.1940

    Article  CAS  PubMed  Google Scholar 

  74. Kent T, Chandramouly G, McDevitt SM, Ozdemir AY, Pomerantz RT (2015) Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase theta. Nat Struct Mol Biol 22(3):230–237. https://doi.org/10.1038/nsmb.2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang M, Wu W, Wu W, Rosidi B, Zhang L, Wang H et al (2006) PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res 34(21):6170–6182. https://doi.org/10.1093/nar/gkl840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Aylon Y, Liefshitz B, Kupiec M (2004) The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J 23(24):4868–4875. https://doi.org/10.1038/sj.emboj.7600469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ira G, Pellicioli A, Balijja A, Wang X, Fiorani S, Carotenuto W et al (2004) DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431(7011):1011–1017. https://doi.org/10.1038/nature02964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shibata A, Conrad S, Birraux J, Geuting V, Barton O, Ismail A et al (2011) Factors determining DNA double-strand break repair pathway choice in G2 phase. EMBO J 30(6):1079–1092. https://doi.org/10.1038/emboj.2011.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, Bartek J et al (2007) Human CtIP promotes DNA end resection. Nature 450(7169):509–514. https://doi.org/10.1038/nature06337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nimonkar AV, Genschel J, Kinoshita E, Polaczek P, Campbell JL, Wyman C et al (2011) BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev 25(4):350–362. https://doi.org/10.1101/gad.2003811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bizard AH, Hickson ID (2014) The dissolution of double Holliday junctions. Cold Spring Harb Perspect Biol 6(7):a016477. https://doi.org/10.1101/cshperspect.a016477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. George KA, Hada M, Cucinotta FA (2015) Biological effectiveness of accelerated protons for chromosome exchanges. Front Oncol 5:226. https://doi.org/10.3389/fonc.2015.00226

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gerelchuluun, A. (2020). DNA Damage, Repair Mechanisms, and Chromosomal Aberrations. In: Tsuboi, K., Sakae, T., Gerelchuluun, A. (eds) Proton Beam Radiotherapy. Springer, Singapore. https://doi.org/10.1007/978-981-13-7454-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7454-8_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7453-1

  • Online ISBN: 978-981-13-7454-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics