Skip to main content

The Influence of Maternal and Social Factors During Intrauterine Life

  • Chapter
  • First Online:
Bone Health

Abstract

Adult chronic disorders, such as hypertension, diabetes, osteoporosis, or obesity, represent an increasing proportion of the global burden of disease. These disorders are the result of complex interactions between genetic and environmental factors. There is increasing epidemiological and experimental evidence showing that the influence of environmental exposures takes place not only after birth but also during intrauterine life. Although randomized interventional studies are difficult to perform in this setting, a variety of data suggest that factors such as maternal nutrition and stress result in adaptive changes in the fetus, affect fetal growth and development, and influence the risk of disease in later life. The mechanisms translating environmental exposures into disease risk may be multiple and include direct effects on developing organs and, especially, epigenetic changes. Epigenetic mechanisms modify gene activity in a relatively stable manner, without changing the DNA sequence. They are powerful means to adapt to the environmental influences, but they may also favor the development of disease. DNA methylation is the most extensively studied epigenetic signature. Many animal studies and human epidemiological observations strongly suggest that the intrauterine environment influences the DNA pattern, which, in turn, determine the risk of disease during adulthood. So far, the stronger evidence is for the relationship between undernutrition while in utero and the later risk of metabolic and cardiovascular disorders. Also, some studies suggest that intrauterine growth is associated with postnatal skeletal size and bone mineral content in early postnatal years. Whether it translates into the risk of fractures at advanced age is still unclear. Overall, data accumulated during the last two decades are consistent with a role of exposures during intrauterine life in determining the risk of many complex prevalent disorders. Of course, other factors, including the genetic background and postnatal environmental factors, are also important. However, already available data call for attention to the modifiable circumstances of early life, including both prenatal period and childhood, in order to minimize the risk of disease in later life as adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanson MA, Gluckman PD. Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev. 2014;94(4):1027–76. https://doi.org/10.1152/physrev.00029.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mandy M, Nyirenda M. Developmental origins of health and disease: the relevance to developing nations. Int Health. 2018;10(2):66–70. https://doi.org/10.1093/inthealth/ihy006.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Huxley R, Neil A, Collins R. Unravelling the fetal origins hypothesis: is there really an inverse association between birthweight and subsequent blood pressure? Lancet. 2002;360(9334):659–65.

    Article  PubMed  Google Scholar 

  4. Wadhwa P, Buss C, Entringer S, Swanson J. Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Semin Reprod Med. 2009;27(5):358–68. https://doi.org/10.1055/s-0029-1237424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burton GJ, Fowden AL, Thornburg KL. Placental origins of chronic disease. Physiol Rev. 2016;96(4):1509–65. https://doi.org/10.1152/physrev.00029.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Padmanabhan V, Cardoso RC, Puttabyatappa M. Developmental programming, a pathway to disease. Endocrinology. 2016;157(4):1328–40. https://doi.org/10.1210/en.2016-1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001;60:5–20.

    Article  CAS  PubMed  Google Scholar 

  8. West-Eberhard MJ. Developmental plasticity and the origin of species differences. Proc Natl Acad Sci U S A. 2005;102(Suppl 1):6543–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gluckman PD, Hanson MA, Buklijas T. A conceptual framework for the developmental origins of health and disease. J Dev Orig Health Dis. 2010;1(1):6–18. https://doi.org/10.1017/S2040174409990171.

    Article  CAS  PubMed  Google Scholar 

  10. Riancho J, del Real A, Riancho JA. How to interpret epigenetic association studies: a guide for clinicians. Bonekey Rep. 2016;5:797. https://doi.org/10.1038/bonekey.2016.24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feng S, Jacobsen SE, Reik W. Epigenetic reprogramming in plant and animal development. Science. 2010;330(6004):622–7. https://doi.org/10.1126/science.1190614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Best JD, Carey N. The epigenetics of normal pregnancy. Obstet Med. 2013;6(1):3–7. https://doi.org/10.1258/OM.2011.110070.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hemberger M, Dean W, Reik W. Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat Rev Mol Cell Biol. 2009;10(8):526–37. https://doi.org/10.1038/nrm2727.

    Article  CAS  PubMed  Google Scholar 

  14. Geraghty AA, Lindsay KL, Alberdi G, McAuliffe FM, Gibney ER. Nutrition during pregnancy impacts offspring’s epigenetic status—evidence from human and animal studies. Nutr Metab Insights. 2016;8(Suppl 1):41–7. https://doi.org/10.4137/NMI.S29527.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nelissen ECM, van Montfoort APA, Dumoulin JCM, Evers JLH. Epigenetics and the placenta. Hum Reprod Update. 2011;17(3):397–417. https://doi.org/10.1093/humupd/dmq052.

    Article  CAS  PubMed  Google Scholar 

  16. Lumey L, Stein A, Susser E. Prenatal famine and adult health. Annu Rev Public Health. 2011;32:237–62. https://doi.org/10.1146/annurev-publhealth-031210-101230.

    Article  CAS  PubMed  Google Scholar 

  17. Stein AD, Pierik FH, Verrips GHW, Susser ES, Lumey LH. Maternal exposure to the Dutch famine before conception and during pregnancy: quality of life and depressive symptoms in adult offspring. Epidemiology. 2009;20(6):909–15. https://doi.org/10.1097/EDE.0b013e3181b5f227.

    Article  PubMed  Google Scholar 

  18. Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y, Slieker RC, Stok AP, Thijssen PE, Müller F, van Zwet EW, Bock C, Meissner A, Lumey LH, Eline Slagboom P, Heijmans BT. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun. 2014;5:5592. https://doi.org/10.1038/ncomms6592.

    Article  CAS  PubMed  Google Scholar 

  19. Lumey LH, Stein AD, Kahn HS, Van der Pal-de Bruin KM, Blauw GJ, Zybert PA, Susser ES. Cohort profile: the Dutch hunger winter families study. Int J Epidemiol. 2007;36(6):1196–204. https://doi.org/10.1093/ije/dym126.

    Article  CAS  PubMed  Google Scholar 

  20. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008;105(44):17046–9. https://doi.org/10.1073/pnas.0806560105.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fleming TP, Watkins AJ, Velazquez MA, Mathers JC, Prentice AM, Stephenson J, Barker M, Saffery R, Yajnik CS, Eckert JJ, Hanson MA, Forrester T, Gluckman PD, Godfrey KM. Origins of lifetime health around the time of conception: causes and consequences. Lancet. 2018;391(10132):1842–52. https://doi.org/10.1016/S0140-6736(18)30312-X.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bygren LO, Tinghög P, Carstensen J, Edvinsson S, Kaati G, Pembrey ME, Sjöström M. Change in paternal grandmothers early food supply influenced cardiovascular mortality of the female grandchildren. BMC Genet. 2014;15(1):12. https://doi.org/10.1186/1471-2156-15-12.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stanner SA, Yudkin JS. Fetal programming and the Leningrad Siege study. Twin Res. 2001;4(5):287–92. https://doi.org/10.1375/1369052012498.

    Article  CAS  PubMed  Google Scholar 

  24. Kannisto V, Christensen K, Vaupel JW. No increased mortality in later life for cohorts born during famine. Am J Epidemiol. 1997;145(11):987–94.

    Article  CAS  PubMed  Google Scholar 

  25. Koupil I, Shestov DB, Sparén P, Plavinskaja S, Parfenova N, Vågerö D. Blood pressure, hypertension and mortality from circulatory disease in men and women who survived the siege of Leningrad. Eur J Epidemiol. 2007;22(4):223–34. https://doi.org/10.1007/s10654-007-9113-6.

    Article  PubMed  Google Scholar 

  26. Gluckman PD, Hanson MA. Maternal constraint of fetal growth and its consequences. Semin Fetal Neonatal Med. 2004;9(5):419–25. https://doi.org/10.1016/j.siny.2004.03.001.

    Article  PubMed  Google Scholar 

  27. Charalambous M, da Rocha ST, Ferguson-Smith AC. Genomic imprinting, growth control and the allocation of nutritional resources: consequences for postnatal life. Curr Opin Endocrinol Diabetes Obes. 2007;14(1):3–12. https://doi.org/10.1097/MED.0b013e328013daa2.

    Article  CAS  PubMed  Google Scholar 

  28. Thornburg KL, Kolahi K, Pierce M, Valent A, Drake R, Louey S. Biological features of placental programming. Placenta. 2016;48(Suppl 1):S47–53. https://doi.org/10.1016/j.placenta.2016.10.012.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions and adult health and disease. N Engl J Med. 2008;359(1):61–73. https://doi.org/10.1056/NEJMra0708473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barker DJP, Osmond C, Thornburg KL, Kajantie E, Eriksson JG. The lifespan of men and the shape of their placental surface at birth. Placenta. 2011;32(10):783–7. https://doi.org/10.1016/j.placenta.2011.07.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wilson ME, Ford SP. Comparative aspects of placental efficiency. Reprod Suppl. 2001;58:223–32.

    CAS  PubMed  Google Scholar 

  32. Martyn CN, Barker DJ, Osmond C. Mothers’ pelvic size, fetal growth, and death from stroke and coronary heart disease in men in the UK. Lancet. 1996;348(9037):1264–8.

    Article  CAS  PubMed  Google Scholar 

  33. Calay ES, Hotamisligil GS. Turning off the inflammatory, but not the metabolic, flames. Nat Med. 2013;19(3):265–7. https://doi.org/10.1038/nm.3114.

    Article  CAS  PubMed  Google Scholar 

  34. Denisenko O, Lin B, Louey S, Thornburg K, Bomsztyk K, Bagby S. Maternal malnutrition and placental insufficiency induce global downregulation of gene expression in fetal kidneys. J Dev Orig Health Dis. 2011;2(2):124–33. https://doi.org/10.1017/S2040174410000632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yates DT, Macko AR, Nearing M, Chen X, Rhoads RP, Limesand SW. Developmental programming in response to intrauterine growth restriction impairs myoblast function and skeletal muscle metabolism. J Pregnancy. 2012;2012:631038. https://doi.org/10.1155/2012/631038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maccani MA, Marsit CJ. Epigenetics in the placenta. Am J Reprod Immunol. 2009;62(2):78–89. https://doi.org/10.1111/j.1600-0897.2009.00716.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Veena SR, Gale CR, Krishnaveni GV, Kehoe SH, Srinivasan K, Fall CH. Association between maternal nutritional status in pregnancy and offspring cognitive function during childhood and adolescence; a systematic review. BMC Pregnancy Childbirth. 2016;16:220. https://doi.org/10.1186/s12884-016-1011-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lowensohn RI, Stadler DD, Naze C. Current concepts of maternal nutrition. Obstet Gynecol Surv. 2016;71(7):413–26. https://doi.org/10.1097/OGX.0000000000000329.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Moody L, Chen H, Pan Y-X. Early-life nutritional programming of cognition—the fundamental role of epigenetic mechanisms in mediating the relation between early-life environment and learning and memory process. Adv Nutr. 2017;8(2):337–50. https://doi.org/10.3945/an.116.014209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eyles DW, Trzaskowski M, Vinkhuyzen AA, Mattheisen M, Meier S, Gooch H, Anggono V, Cui X, Tan MC, Burne THJ, Jang SE, Kvaskoff D, Hougaard DM, Nørgaard-Pedersen B, Cohen A, Agerbo E, Pedersen CB, Børglum AD, Mors O, Sah P, Wray NR, Mortensen PB, McGrath JJ. The association between neonatal vitamin D status and risk of schizophrenia. Sci Rep. 2018;8(1):17692. https://doi.org/10.1038/s41598-018-35418-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Neri C, Edlow AG. Effects of maternal obesity on fetal programming: molecular approaches. Cold Spring Harb Perspect Med. 2015;6(2):a026591. https://doi.org/10.1101/cshperspect.a026591.

    Article  CAS  PubMed  Google Scholar 

  42. Lan X, Cretney EC, Kropp J, Khateeb K, Berg M, Peñagaricano F, Magness R, Radunz A, Khatib H. Maternal diet during pregnancy induces gene expression and DNA methylation changes in fetal tissues in sheep. Front Genet. 2013;4:49. https://doi.org/10.3389/fgene.2013.00049.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Waterland RA, Travisano M, Tahiliani KG, Rached MT, Mirza S. Methyl donor supplementation prevents transgenerational amplification of obesity. Int J Obes. 2008;32(9):1373–9. https://doi.org/10.1038/ijo.2008.100.

    Article  CAS  Google Scholar 

  44. Andraos S, de Seymour JV, O’Sullivan JM, Kussmann M. The impact of nutritional interventions in pregnant women on DNA methylation patterns of the offspring: a systematic review. Mol Nutr Food Res. 2018;62(24):e1800034. https://doi.org/10.1002/mnfr.201800034.

    Article  CAS  PubMed  Google Scholar 

  45. Lange S, Probst C, Rehm J, Popova S. National, regional, and global prevalence of smoking during pregnancy in the general population: a systematic review and meta-analysis. Lancet Glob Health. 2018;6(7):e769–76. https://doi.org/10.1016/S2214-109X(18)30223-7.

    Article  PubMed  Google Scholar 

  46. Vivekanandarajah A, Waters KA, Machaalani R. Cigarette smoke exposure effects on the brainstem expression of nicotinic acetylcholine receptors (nAChRs), and on cardiac, respiratory and sleep physiologies. Respir Physiol Neurobiol. 2019;259:1–15. https://doi.org/10.1016/j.resp.2018.07.007.

    Article  CAS  PubMed  Google Scholar 

  47. Gaysina D, Fergusson DM, Leve LD, Horwood J, Reiss D, Shaw DS, Elam KK, Natsuaki MN, Neiderhiser JM, Harold GT. Maternal smoking during pregnancy and offspring conduct problems: evidence from 3 independent genetically sensitive research designs. JAMA Psychiat. 2013;70(9):956–63. https://doi.org/10.1001/jamapsychiatry.2013.127.

    Article  Google Scholar 

  48. Albers L, Sobotzki C, Kuß O, Ajslev T, Batista RF, Bettiol H, Brabin B, Buka SL, Cardoso VC, Clifton VL, Devereux G, Gilman SE, Grzeskowiak LE, Heinrich J, Hummel S, Jacobsen GW, Jones G, Koshy G, Morgen CS, Oken E, Paus T, Pausova Z, Rifas-Shiman SL, Sharma AJ, da Silva AA, Sørensen TI, Thiering E, Turner S, Vik T, von Kries R. Maternal smoking during pregnancy and offspring overweight: is there a dose–response relationship? An individual patient data meta-analysis. Int J Obes. 2018;42(7):1249–64. https://doi.org/10.1038/s41366-018-0050-0.

    Article  Google Scholar 

  49. Gopalakrishnan K, More AS, Hankins GD, Nanovskaya TN, Kumar S. Postnatal cardiovascular consequences in the offspring of pregnant rats exposed to smoking and smoking cessation pharmacotherapies. Reprod Sci. 2017;24(6):919–33. https://doi.org/10.1177/1933719116673199.

    Article  CAS  PubMed  Google Scholar 

  50. Lee JW, Jaffar Z, Pinkerton KE, Porter V, Postma B, Ferrini M, Holian A, Roberts K, Cho YH. Alterations in DNA methylation and airway hyperreactivity in response to in utero exposure to environmental tobacco smoke. Inhal Toxicol. 2015;27(13):724–30. https://doi.org/10.3109/08958378.2015.1104402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cole E, Brown TA, Pinkerton KE, Postma B, Malany K, Yang M, Kim YJ, Hamilton RF Jr, Holian A, Cho YH. Perinatal exposure to environmental tobacco smoke is associated with changes in DNA methylation that precede the adult onset of lung disease in a mouse model. Inhal Toxicol. 2017;29(10):435–42. https://doi.org/10.1080/08958378.2017.1392655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pagnin D, Zamboni Grecco ML, Furtado EF. Prenatal alcohol use as a risk for attention-deficit/hyperactivity disorder. Eur Arch Psychiatry Clin Neurosci. 2018;23:1–7. https://doi.org/10.1007/s00406-018-0946-7.

    Article  Google Scholar 

  53. Wang R, Shen YL, Hausknecht KA, Chang L, Haj-Dahmane S, Vezina P, Shen RY. Prenatal ethanol exposure increases risk of psychostimulant addiction. Behav Brain Res. 2019;356:51–61. https://doi.org/10.1016/j.bbr.2018.07.030.

    Article  CAS  PubMed  Google Scholar 

  54. Kim P, Choi CS, Park JH, Joo SH, Kim SY, Ko HM, Kim KC, Jeon SJ, Park SH, Han SH, Ryu JH, Cheong JH, Han JY, Ko KN, Shin CY. Chronic exposure to ethanol of male mice before mating produces attention deficit hyperactivity disorder-like phenotype along with epigenetic dysregulation of dopamine transporter expression in mouse offspring. J Neurosci Res. 2014;92(5):658–70. https://doi.org/10.1002/jnr.23275.

    Article  CAS  PubMed  Google Scholar 

  55. Finegersh A, Rompala GR, Martin DIK, Homanics GE. Drinking beyond a lifetime: new and emerging insights into paternal alcohol exposure on subsequent generations. Alcohol. 2015;49(5):461–70. https://doi.org/10.1016/j.alcohol.2015.02.008.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Przybycien-Szymanska MM, Rao YS, Prins SA, Pak TR. Parental binge alcohol abuse alters F1 generation hypothalamic gene expression in the absence of direct fetal alcohol exposure. PLoS One. 2014;9(2):e89320. https://doi.org/10.1371/journal.pone.0089320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Baird J, Jacob C, Barker M, Fall CH, Hanson M, Harvey NC, Inskip HM, Kumaran K, Cooper C. Developmental origins of health and disease: a life course approach to the prevention of non-communicable diseases. Healthcare (Basel). 2017;5(1):14. https://doi.org/10.3390/healthcare5010014.

    Article  Google Scholar 

  58. Tobi EW, Slieker RC, Luijk R, Dekkers KF, Stein AD, Xu KM, Slagboom PE, Van Zwet EW, Lumey LH, Heijmans BT, Biobank-based Integrative Omics Studies Consortium. DNA methylation as a mediator of the association between prenatal adversity and risk factors for metabolic disease in adulthood. Sci Adv. 2018;4(1):eaao4364. https://doi.org/10.1126/sciadv.aao4364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kueper J, Beyth S, Liebergall M, Kaplan L, Schroeder JE. Evidence for the adverse effect of starvation on bone quality: a review of the literature. Int J Endocrinol. 2015;2015:628740. https://doi.org/10.1155/2015/628740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Godfrey K, Walker-Bone K, Robinson S, Taylor P, Shore S, Wheeler T, Cooper C. Neonatal bone mass: influence of parental birthweight, maternal smoking, body composition, and activity during pregnancy. J Bone Miner Res. 2001;16(9):1694–703. https://doi.org/10.1359/jbmr.2001.16.9.1694.

    Article  CAS  PubMed  Google Scholar 

  61. Cooper C, Javaid K, Westlake S, Harvey N, Dennison E. Developmental origins of osteoporotic fracture: the role of maternal vitamin D insufficiency. J Nutr. 2005;135(11):2728S–34S. https://doi.org/10.1093/jn/135.11.2728S.

    Article  CAS  PubMed  Google Scholar 

  62. Dötsch J. Low birth weight, bone metabolism and fracture risk. Dermato-Endocrinol. 2011;3(4):240–2. https://doi.org/10.4161/derm.3.4.14636.

    Article  Google Scholar 

  63. Harvey NC, Mahon PA, Robinson SM, Nisbet CE, Javaid MK, Crozier SR, Inskip HM, Godfrey KM, Arden NK, Dennison EM, Cooper C, SWS Study Group. Different indices of fetal growth predict bone size and volumetric density at 4 years of age. J Bone Miner Res. 2010;25(4):920–7. https://doi.org/10.1359/jbmr.091022.

    Article  PubMed  Google Scholar 

  64. Baird J, Kurshid MA, Kim M, Harvey N, Dennison E, Cooper C. Does birthweight predict bone mass in adulthood? A systematic review and meta-analysis. Osteoporos Int. 2011;22(5):1323–34. https://doi.org/10.1007/s00198-010-1344-9.

    Article  CAS  PubMed  Google Scholar 

  65. Martinez-Mesa J, Restrepo-Méndez MC, González DA, Wehrmeister FC, Horta BL, Domingues MR, Menezes AM. Life-course evidence of birth weight effects on bone mass: systematic review and meta-analysis. Osteoporos Int. 2013;24(1):7–18. https://doi.org/10.1007/s00198-012-2114-7.

    Article  CAS  PubMed  Google Scholar 

  66. Mikkola TM, von Bonsdorff MB, Osmond C, Salonen MK, Kajantie E, Eriksson JG. Association of body size at birth and childhood growth with hip fractures in older age: an exploratory follow-up of the Helsinki Birth Cohort Study. J Bone Miner Res. 2017;32(6):1194–200. https://doi.org/10.1002/jbmr.3100.

    Article  PubMed  Google Scholar 

  67. Byberg L, Michaëlsson K, Goodman A, Zethelius B, Koupil I. Birth weight is not associated with risk of fracture: results from two Swedish cohort studies. J Bone Miner Res. 2014;29(10):2152–60. https://doi.org/10.1002/jbmr.2246.

    Article  PubMed  Google Scholar 

  68. Zhu K, Whitehouse AJ, Hart PH, Kusel M, Mountain J, Lye S, Pennell C, Walsh JP. Maternal vitamin D status during pregnancy and bone mass in offspring at 20 years of age: a prospective cohort study. J Bone Miner Res. 2014;29(5):1088–95. https://doi.org/10.1002/jbmr.2138.

    Article  CAS  PubMed  Google Scholar 

  69. von Websky K, Hasan AA, Reichetzeder C, Tsuprykov O, Hocher B. Impact of vitamin D on pregnancy-related disorders and on offspring outcome. J Steroid Biochem Mol Biol. 2018;180:51–64. https://doi.org/10.1016/j.jsbmb.2017.11.008.

    Article  CAS  Google Scholar 

  70. Mahon P, Harvey N, Crozier S, Inskip H, Robinson S, Arden N, Swaminathan R, Cooper C, Godfrey K, SWS Study Group. Low maternal vitamin D status and fetal bone development: cohort study. J Bone Miner Res. 2010;25:14–9. https://doi.org/10.1359/jbmr.090701.

    Article  CAS  PubMed  Google Scholar 

  71. Garcia AH, Erler NS, Jaddoe VW, Tiemeier H, van den Hooven EH, Franco OH, Rivadeneira F, Voortman T. 25-hydroxyvitamin D concentrations during fetal life and bone health in children aged 6 years: a population-based prospective cohort study. Lancet Diabetes Endocrinol. 2017;5(5):367–76. https://doi.org/10.1016/S2213-8587(17)30064-5.

    Article  CAS  PubMed  Google Scholar 

  72. Roth DE, Morris SK, Zlotkin S, Gernand AD, Ahmed T, Shanta SS, Papp E, Korsiak J, Shi J, Islam MM, Jahan I, Keya FK, Willan AR, Weksberg R, Mohsin M, Rahman QS, Shah PS, Murphy KE, Stimec J, Pell LG, Qamar H, Al Mahmud A. Vitamin D supplementation in pregnancy and lactation and infant growth. N Engl J Med. 2018;379(6):535–46. https://doi.org/10.1056/NEJMoa1800927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sahoo SK, Katam KK, Das V, Agarwal A, Bhatia V. Maternal vitamin D supplementation in pregnancy and offspring outcomes: a double-blind randomized placebo-controlled trial. J Bone Miner Metab. 2017;35(4):464–71. https://doi.org/10.1007/s00774-016-0777-4.

    Article  CAS  PubMed  Google Scholar 

  74. Xue J, Schoenrock SA, Valdar W, Tarantino LM, Ideraabdullah FY. Maternal vitamin D depletion alters DNA methylation at imprinted loci in multiple generations. Clin Epigenetics. 2016;8:107. https://doi.org/10.1186/s13148-016-0276-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Harvey NC, Sheppard A, Godfrey KM, McLean C, Garratt E, Ntani G, Davies L, Murray R, Inskip HM, Gluckman PD, Hanson MA, Lillycrop KA, Cooper C. Childhood bone mineral content is associated with methylation status of the RXRA promoter at birth. J Bone Miner Res. 2014;29(3):600–7. https://doi.org/10.1002/jbmr.2056.

    Article  CAS  PubMed  Google Scholar 

  76. Harvey NC, Lillycrop KA, Garratt E, Sheppard A, McLean C, Burdge G, Slater-Jefferies J, Rodford J, Crozier S, Inskip H, Emerald BS, Gale CR, Hanson M, Gluckman P, Godfrey K, Cooper C. Evaluation of methylation status of the eNOS promoter at birth in relation to childhood bone mineral content. Calcif Tissue Int. 2012;90(2):120–7. https://doi.org/10.1007/s00223-011-9554-5.

    Article  CAS  PubMed  Google Scholar 

  77. Curtis EM, Murray R, Titcombe P, Cook E, Clarke-Harris R, Costello P, Garratt E, Holbrook JD, Barton S, Inskip H, Godfrey KM, Bell CG, Cooper C, Lillycrop KA, Harvey NC. Perinatal DNA methylation at CDKN2A is associated with offspring bone mass: findings from the Southampton Women’s survey. J Bone Miner Res. 2017;32(10):2030–40. https://doi.org/10.1002/jbmr.3153.

    Article  CAS  PubMed  Google Scholar 

  78. Riancho JA, Salas E, Zarrabeitia MT, Olmos JM, Amado JA, Fernández-Luna JL, González-Macías J. Expression and functional role of nitric oxide synthase in osteoblast-like cells. J Bone Miner Res. 1995;10(3):439–46. https://doi.org/10.1002/jbmr.5650100315.

    Article  CAS  PubMed  Google Scholar 

  79. Curtis EM, Krstic N, Cook E, D’Angelo S, Crozier SR, Moon RJ, Murray R, Garratt E, Costello P, Cleal J, Ashley B, Bishop NJ, Kennedy S, Papageorghiou AT, Schoenmakers I, Fraser R, Gandhi SV, Prentice A, Javaid MK, Inskip HM, Godfrey KM, Bell CG, Lillycrop KA, Cooper C, Harvey NC, MAVIDOS Trial Group. Gestational vitamin D supplementation leads to reduced perinatal RXRA DNA methylation: results from the MAVIDOS trial. J Bone Miner Res. 2018;34(2):231–40. https://doi.org/10.1002/jbmr.3603.

    Article  Google Scholar 

  80. Brennan-Olsen SL, Page RS, Berk M, Riancho JA, Leslie WD, Wilson SG, Saban KL, Janusek L, Pasco JA, Hodge JM, Quirk SE, Hyde NK, Hosking SM, Williams LJ. DNA methylation and the social gradient of osteoporotic fracture: a conceptual model. Bone. 2016;84:204–12. https://doi.org/10.1016/j.bone.2015.12.015.

    Article  CAS  PubMed  Google Scholar 

  81. Brennan SL, Leslie WD, Lix LM. Associations between adverse social position and bone mineral density in women aged 50 years or older: data from the Manitoba Bone density program. Osteoporos Int. 2013;24(9):2405–12. https://doi.org/10.1007/s00198-013-2311-z.

    Article  CAS  PubMed  Google Scholar 

  82. Brennan SL, Holloway KL, Williams LJ, Kotowicz MA, Bucki-Smith G, Moloney DJ, Dobbins AG, Timney EN, Pasco JA. The social gradient of fractures at any skeletal site in men and women: data from the Geelong osteoporosis study fracture grid. Osteoporos Int. 2015;26(4):1351–9. https://doi.org/10.1007/s00198-014-3004-y.

    Article  CAS  PubMed  Google Scholar 

  83. Riancho JA, Brennan-Olsen SL. The epigenome at the crossroad between social factors, inflammation, and osteoporosis risk. Clinic Rev Bone Miner Metab. 2017;15:59. https://doi.org/10.1007/s12018-017-9229-5.

    Article  CAS  Google Scholar 

  84. Vaiserman AM. Epigenetic programming by early-life stress: evidence from human populations. Dev Dyn. 2015;244(3):254–65. https://doi.org/10.1002/dvdy.24211.

    Article  CAS  PubMed  Google Scholar 

  85. Vaiserman A. Epidemiologic evidence for association between adverse environmental exposures in early life and epigenetic variation: a potential link to disease susceptibility? Clin Epigenetics. 2015;7(1):96. https://doi.org/10.1186/s13148-015-0130-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Teh AL, Pan H, Chen L, Ong ML, Dogra S, Wong J, MacIsaac JL, Mah SM, McEwen LM, Saw SM, Godfrey KM, Chong YS, Kwek K, Kwoh CK, Soh SE, Chong MF, Barton S, Karnani N, Cheong CY, Buschdorf JP, Stünkel W, Kobor MS, Meaney MJ, Gluckman PD, Holbrook JD. The effect of genotype and in utero environment on inter-individual variation in neonate DNA methylomes. Genome Res. 2014;24(7):1064–74. https://doi.org/10.1101/gr.171439.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vick AD, Burris HH. Epigenetics and health disparities. Curr Epidemiol Rep. 2017;4(1):31–7. https://doi.org/10.1007/s40471-017-0096-x.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Nemoda Z, Szyf M. Epigenetic alterations and prenatal maternal depression. Birth Defects Res. 2017;109(12):888–97. https://doi.org/10.1002/bdr2.1081.

    Article  CAS  PubMed  Google Scholar 

  89. Viuff AC, Sharp GC, Rai D, Henriksen TB, Pedersen LH, Kyng KJ, Staunstrup NH, Cortes A, Neumann A, Felix JF, Tiemeier H, Jaddoe VWV, Relton CL. Maternal depression during pregnancy and cord blood DNA methylation: findings from the Avon Longitudinal Study of Parents and Children. Transl Psychiatry. 2018;8(1):244. https://doi.org/10.1038/s41398-018-0286-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yehuda R, Daskalakis NP, Bierer LM, Bader HN, Klengel T, Holsboer F, Binder EB. Holocaust exposure induced intergenerational effects on FKBP5 methylation. Biol Psychiatry. 2016;80(5):372–80. https://doi.org/10.1016/j.biopsych.2015.08.005.

    Article  CAS  PubMed  Google Scholar 

  91. Dias BG, Ressler KJ. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci. 2014;17(1):89–96. https://doi.org/10.1038/nn.3594.

    Article  CAS  PubMed  Google Scholar 

  92. Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell. 2014;157(1):95–109. https://doi.org/10.1016/j.cell.2014.02.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab. 2010;21(4):214–22. https://doi.org/10.1016/j.tem.2009.12.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. van Steenwyk G, Roszkowski M, Manuella F, Franklin TB, Mansuy IM. Transgenerational inheritance of behavioral and metabolic effects of paternal exposure to traumatic stress in early postnatal life: evidence in the 4th generation. Environ Epigenetics. 2018;4(2):dvy023. https://doi.org/10.1093/eep/dvy023.

    Article  CAS  Google Scholar 

  95. Meyer M, Kircher M, Gansauge MT, Li H, Racimo F, Mallick S, Schraiber JG, Jay F, Prüfer K, de Filippo C, Sudmant PH, Alkan C, Fu Q, Do R, Rohland N, Tandon A, Siebauer M, Green RE, Bryc K, Briggs AW, Stenzel U, Dabney J, Shendure J, Kitzman J, Hammer MF, Shunkov MV, Derevianko AP, Patterson N, Andrés AM, Eichler EE, Slatkin M, Reich D, Kelso J, Pääbo S. A high-coverage genome sequence from an archaic Denisovan individual. Science. 2012;338(6104):222–6. https://doi.org/10.1126/science.1224344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A. Riancho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santurtún, A., Riancho, J., Riancho, J.A. (2019). The Influence of Maternal and Social Factors During Intrauterine Life. In: Miszkiewicz, J., Brennan-Olsen, S., Riancho, J. (eds) Bone Health. Springer, Singapore. https://doi.org/10.1007/978-981-13-7256-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7256-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7255-1

  • Online ISBN: 978-981-13-7256-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics