Skip to main content

Biotic and Abiotic Stress Management by AM-Mediated PGPRs

  • Chapter
  • First Online:
Plant Growth Promoting Rhizobacteria for Sustainable Stress Management

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 13))

Abstract

Arbuscular mycorrhizal fungi or AM fungi improve mineral and water nutrition of most of the land plants by developing a mutualistic symbiosis with the plants and thus increase the resistance of plants to biotic and abiotic stress. The intraradical proliferation of soilborne plant pathogens is greatly affected by root colonization by AM fungi. Specifically, the rhizobacteria associated with the AM extraradical network and the mycorrhizosphere are attributed to the biocontrol exerted by the AM fungi. Mycorrhizosphere is the soil zone under the influence of the root and AM association with some particular characteristics. Mycorrhizosphere provides a conducive environment for proliferation of antagonistic microorganisms that suppresses the growth of phytopathogens. Rhizobacteria associated with AM structures and mycorrhizosphere are found to have strong antagonistic potential against various soilborne phytopathogens. The phenomenon is attributed to the capacity of AM fungi to stimulate the establishment of antagonistic rhizobacteria in mycorrhizosphere ahead of the infection by root pathogens and triggering the localized and systemic defense mechanisms of the crop plants. Mechanisms of biocontrol, biocontrol of many diseases of various crop plants, and abiotic stress management under water and salt stress conditions of various crop plants by AM-mediated rhizobacteria have also been discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akhtar MS, Siddiqui ZA (2008) Biocontrol of a root rot disease complex of chickpea by Glomus intraradices, Rhizobium sp., and Pseudomonas striata. Crop Protect 27:410–417

    Article  Google Scholar 

  • Akhtar MS, Siddiqui MA (2009) Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In: Siddiqui ZA, Akhtar S, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 61–98

    Google Scholar 

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192:71–79

    Article  CAS  Google Scholar 

  • Artursson V, Jansson JK (2003) Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Appl Environ Microbiol 69:6208–6215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  CAS  PubMed  Google Scholar 

  • Augé RM (2001) Water relations, drought, and VA mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    Article  CAS  Google Scholar 

  • Aysen K, Gulden B, Yasar E, Hakan K, Nalan B, Sezai E (2016) Influence of arbuscular mycorrhizae and plant growth promoting rhizobacteria on proline content, membrane permeability and growth of strawberry (Fragaria × ananassa Duch.) under salt stress. J Appl Bot Food Qual 89:89–97

    Google Scholar 

  • Azaizeh H, Marschner H, Römheld V, Wittenmayer L (1995) Effects of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil-grown maize plants. Mycorrhiza 5(5):321–327. https://doi.org/10.1007/BF00207404

    Article  Google Scholar 

  • Baath E, Hayman DS (1983) Plant growth responses to vesicular-arbuscular mycorrhizae XIV. Interactions with Verticillium wilt on tomato plants. New Phytol 95:419–426

    Article  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Bharadwaj DP, Lundquist PO, Alstrom S (2008a) Arbuscular mycorrhizal fungal spore-associated bacteria affect mycorrhizal colonization, plant growth, and potato pathogens. Soil Biol Biochem 40:2494–2501

    Article  CAS  Google Scholar 

  • Bharadwaj DP, Lundquist PO, Persson P, Alstrom S (2008b) Evidence for specificity of cultivable bacteria associated with arbuscular mycorrhizal fungal spores (multitrophic interactions in the rhizosphere). FEMS Microbiol Ecol 65:310–322

    Article  CAS  PubMed  Google Scholar 

  • Bianciotto V, Bonfante P (2002) Arbuscular mycorrhizal fungi: a specialized niche for rhizospheric and endocellular bacteria. Antonie van Leeuwenhoek Int – J Genet Mol Microbiol 81:365–371

    Article  CAS  Google Scholar 

  • Bianciotto V, Minerdi D, Perotto S, Bonfante P (1996a) Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma 193:123–131

    Article  Google Scholar 

  • Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P (1996b) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005–3010

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2001a) Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. Eur J Histochem 45:39–49

    Article  CAS  PubMed  Google Scholar 

  • Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2001b) Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and non-mycorrhizal carrot roots. Mol Plant-Microbe Interac 14:255–260

    Article  CAS  Google Scholar 

  • Bianciotto V, Genre A, Jargeat P, Lumini E, Becard G, Bonfante P (2004) Vertical transmission of endobacteria in the arbuscular mycorrhizal fungus Gigaspora margarita through the generation of vegetative spores. Appl Environ Microbiol 70:3600–3608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonfante P (2003) Plants, mycorrhizal fungi and endobacteria: a dialog among cells and genomes. Biol Bull 204:215–220

    Article  CAS  PubMed  Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agronom 66:1–102

    Article  Google Scholar 

  • Budi SW, Van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Appl Environ Microbiol 65:5148–5150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Budi SW, Van Tuinen D, Arnould C, Dumasgaudot E, Gianinazzi-Pearson V, Gianinazzi S (2000) Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Appl Soil Ecol 15:191–199

    Article  Google Scholar 

  • Carlsen SCK, Understrup A, Fomsgaard IS, Mortensen AG, Ravnskov S (2008) Flavonoids in roots of white clover: interaction of arbuscular mycorrhizal fungi and a pathogenic fungus. Plant Soil 302:33–43

    Article  CAS  Google Scholar 

  • Chang P (2007) The use of plant growth-promoting Rhizobacteria (PGPR) and an Arbuscular Mycorrhizal Fungus (AMF) to improve plant growth in saline soils for phytoremediation. A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of master of science in biology. Waterloo, Ontario, Canada

    Google Scholar 

  • Christensen H, Jakobsen I (1993) Reduction of bacterial growth by a vesicular-arbuscular mycorrhizal fungus in the rhizosphere of cucumber (Cucumis sativus L). Biol Fertil Soils 15:253–258

    Article  Google Scholar 

  • Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonisation patterns of root tissues by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:223–232

    Article  CAS  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant-Microbe Interact 11:1017–1028

    Article  CAS  Google Scholar 

  • Davis RM, Menge JA (1980) Influence of Glomus fasciculatus and soil phosphorus on Phytophthora root rot of citrus. Phytopathology 70:447–452

    Article  CAS  Google Scholar 

  • Duineveld BM, Kowalchuk GA, Keijzer A, JDVE VJAV (2001) Analysis of bacterial communities in the rhizosphere of Chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl Environ Microbiol 67:172–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsen A, Declerck S, De Waele D (2001) Effects of Glomus intraradices on the reproduction of the burrowing nematode (Radopholus similis) in dixenic culture. Mycorrhiza 11:49–51

    Article  Google Scholar 

  • Elsen A, Declerck S, Waele DD (2003) Use of root organ cultures to investigate the interaction between Glomus intraradices and Pratylenchus coffeae. Appl Environ Microbiol 69:4308–4311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533

    Article  Google Scholar 

  • Filion M, St-Arnaud M, Jabaji-Hare SH (2003) Quantification of Fusarium solani f. sp. phaseoli in mycorrhizal bean plants and surrounding mycorrhizosphere soil using real-time polymerase chain reaction and direct isolations on selective media. Phytopathology 93:229–235

    Article  CAS  PubMed  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  CAS  PubMed  Google Scholar 

  • Garbaye J (1994) Mycorrhization helper bacteria: a new dimension in mycorrhizal symbiosis. Act Bot Gall 141:517–521

    Article  Google Scholar 

  • Garmendia I, Aguirreolea J, Goicoechea N (2006) Defence-related enzymes in pepper roots during interactions with arbuscular mycorrhizal fungi and/or Verticillium dahliae. BioControl 51:293–310

    Article  CAS  Google Scholar 

  • Gerdemann J (1968) Vesicular-arbuscular mycorrhiza and plant growth. Annu Rev Phytopathol 6:397–418

    Article  Google Scholar 

  • Gerdemann JW (1974) Vesicular-arbuscular mycorrhiza. Academic, New York

    Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems (special issue: current research at the Scottish Agricultural College). Pest Manag Sci 60:149–157

    Article  CAS  PubMed  Google Scholar 

  • Hause B, Maier W, Miersch O, Kramell R, Strack D (2002) Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol 130:1213–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110

    Article  CAS  PubMed  Google Scholar 

  • Isayenkov S, Mrosk C, Stenzel I, Strack D, Hause B (2005) Suppression of allene oxide cyclase in hairy roots of Medicago truncatula reduces jasmonate levels and the degree of mycorrhization with Glomus intraradices. Plant Physiol 139:1401–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jäderlund L, Arthurson V, Granhall U, Jansson JK (2008) Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria: as revealed by different combinations. FEMS Microbiol Lett 287:174–180

    Article  PubMed  CAS  Google Scholar 

  • Jargeat P, Cosseau C, Ola’h B, Jauneau A, Bonfante P, Batut J, Becard G (2004) Isolation, free-living capacities, and genome structure of Candidatus glomeribacter gigasporarum, the endocellular bacterium of the mycorrhizal fungus Gigaspora margarita. J Bacteriol 186:6876–6884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    Article  CAS  PubMed  Google Scholar 

  • Kabir Z, Ohalloran IP, Fyles JW, Hamel C (1997) Seasonal changes of arbuscular mycorrhizal fungi as affected by tillage practices and fertilization: hyphal density and mycorrhizal root colonization. Plant Soil 192:285–293

    Article  CAS  Google Scholar 

  • Khaosaad T, Garcia-Garrido JM, Steinkellner S, Vierheilig H (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol Biochem 39:727–734

    Article  CAS  Google Scholar 

  • Kim JS, Dungan RS, Kwon SW, Weon HY (2006) The community composition of root-associated bacteria of the tomato plant. W J Microbiol Biotechnol 22:1267–1273

    Article  CAS  Google Scholar 

  • Krishna KR, Bagyaraj DJ (1983) Interaction between Glomus fasciculatum and Sclerotium rolfsii in peanut. Can J Bot 61:2349–2351

    Article  CAS  Google Scholar 

  • Larsen J, Bodker L (2001) Interactions between pea root-inhabiting fungi examined using signature fatty acids. New Phytol 149:487–493

    Article  CAS  PubMed  Google Scholar 

  • Levy A, Chang BJ, Abbott LK, Kuo J, Harnett G, Inglis TJJ (2003) Invasion of spores of the arbuscular mycorrhizal fungus Gigaspora decipiens by Burkholderia spp. Appl Environ Microbiol 69:6250–6256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Ravnskov S, Xie G, Larsen J (2007) Biocontrol of Pythium damping-off in cucumber by arbuscular mycorrhiza-associated bacteria from the genus Paenibacillus. BioControl 52:863–875

    Article  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371

    Google Scholar 

  • Lioussanne L (2007) Roles des modifications de la microflore bactérienne et de l’exudation racinaire de la tomate par la symbiosis mycorhizienne dans le biocontrôle sur le Phytophthora nicotianae. Doctoral thesis. University of Montreal, Montreal. [In French]

    Google Scholar 

  • Lioussanne L (2010) The role of the arbuscular mycorrhiza-associated rhizobacteria in the biocontrol of soilborne phytopathogens. Span J Agric Res 8(S1):S51–S61

    Article  Google Scholar 

  • Lioussanne L, Jolicoeur M, St-Arnaud M (2008) Mycorrhizal colonization with Glomus intraradices and development stage of transformed tomato roots significantly modify the chemotactic response of zoospores of the pathogen Phytophthora nicotianae. Soil Biol Biochem 40:2217–2224

    Article  CAS  Google Scholar 

  • Lioussanne L, Jolicoeur M, St-Arnaud M (2009a) The effects of arbuscular mycorrhizal fungi, of root exudates from mycorrhizal plants and of the soilborne pathogen Phytophthora nicotianae on the bacterial community structure of tomato rhizosphere. Soil Biol Biochem 42:473–483

    Article  CAS  Google Scholar 

  • Lioussanne L, Beauregard MS, Hamel C, Jolicoeur M, St-Arnaud M (2009b) Interactions between arbuscular mycorrhiza and soil microorganisms. In: Khasa D, Piche Y, Coughlan A (eds) Advances in mycorrhizal biotechnology: a Canadian perspective. NRC Press, Ottawa

    Google Scholar 

  • Lioussanne L, Jolicoeur M, St-Arnaud M (2009c) Role of root exudates and rhizosphere microflora in the arbuscular mycorrhizal fungi-mediated biocontrol of Phytophthora nicotianae in tomato. In: Varma A, Kharkwal AC (eds) Symbiotic fungi: principles and practice. Springer, Berlin, pp 141–158

    Chapter  Google Scholar 

  • Lioussanne L, Jolicoeur M, St-Arnaud M (2009d) The growth of the soilborne pathogen Phytophthora nicotianae is reduced in tomato roots colonized with arbuscular mycorrhizal fungi but unaffected by the application of root exudates collected from corresponding mycorrhizal plants. Mycorrhiza 19:443–448

    Article  CAS  PubMed  Google Scholar 

  • Liu JY, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    Article  CAS  PubMed  Google Scholar 

  • Mansfeld-Giese K, Larsen J, Bodker L (2002) Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiol Ecol 41:133–140

    Article  CAS  PubMed  Google Scholar 

  • Marschner P, Timonen S (2005) Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Appl Soil Ecol 28:23–36

    Article  Google Scholar 

  • Marschner P, Crowley DE, Lieberei R (2001) Arbuscular mycorrhizal infection changes the bacterial 16S rDNA community composition in the rhizosphere of maize. Mycorrhiza 11:297–302

    Article  CAS  PubMed  Google Scholar 

  • Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P (2001) Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol 67:725–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to alleviate the stress of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    Article  CAS  Google Scholar 

  • Nehl DB, Allen SJ, Brown JF (1997) Deleterious rhizosphere bacteria: an integrating perspective. Appl Soil Ecol 5:1–20

    Article  Google Scholar 

  • Nogueira MA, Nehls U, Hampp R, Poralla K, Cardoso EJBN (2007) Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant Soil 298:273–284

    Article  CAS  Google Scholar 

  • Norman JR, Hooker JE (2000) Sporulation of Phytophthora fragariae shows greater stimulation by exudates of non-mycorrhizal than by mycorrhizal strawberry roots. Mycol Res 104:1069–1073

    Article  Google Scholar 

  • Olsson PA, Thingstrup I, Jakobsen I, Baath F (1999) Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol Biochem 31:1879–1887

    Article  CAS  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unravelling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Dumas-Gaudot E, Slezack S, Cordier C, Asselin A, Gianinazzi S, Gianinazzipearson V, Azcon-Aguilar C, Barea JM (1996) Induction of new chitinase isoforms in tomato roots during interactions with Glomus mosseae and/or Phytophthora nicotianae var. parasitica. Agronomie 16:689–697

    Article  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C, Dumas-Gaudot E, Barea JM (1998) Chitosanase and chitinase activities in tomato roots during interactions with arbuscular mycorrhizal fungi or Phytophthora parasitica. J Exp Bot 49:1729–1739

    Article  CAS  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C, Dumas-Gaudot E, Barea JM (1999) Beta-1,3-glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Sci 141:149–157

    Article  CAS  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcon-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defense responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Van Loon LC, Pieterse CMJ (2004) Jasmonates – signals in plant-microbe interactions. J Plant Growth Regul 23:211–222

    CAS  Google Scholar 

  • Raiesi F, Ghollarata M (2006) Interactions between phosphorus availability and an AM fungus (Glomus intraradices) and their effects on soil microbial respiration, biomass and enzyme activities in calcareous soil. Pedobiologia 50:413–425

    Article  CAS  Google Scholar 

  • Ravnskov S, Nybroe O, Jakobsen I (1999) Influence of an arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in the rhizosphere and hyphosphere soil. New Phytol 142:113–122

    Article  Google Scholar 

  • Rhodes LH, Gerdemann JW (1975) Phosphate uptake zones of mycorrhizal and non-mycorrhizal onions. New Phytol 75:555–561

    Article  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Lutgen ER, Ramsey PW, Klironomos JN, Gannon JE (2005) Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation. Pedobiologia 49:251–259

    Article  Google Scholar 

  • Roesti D, Ineichen K, Braissant O, Redecker D, Wiemken A, Aragno M (2005) Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum. Appl Environ Microbiol 71:6673–6679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roesti D, Gaur R, Johri BN, Imfeld G, Sharma S, Kawaljeet K et al (2006) Plant growth stage, fertilizer management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rainfed wheat fields. Soil Biol Biochem 38:1111–1120

    Article  CAS  Google Scholar 

  • Rudrappa T, Biedrzycki ML, Bais HP (2008) Causes and consequences of plant-associated biofilms. FEMS Microbiol Ecol 64:153–166

    Article  CAS  PubMed  Google Scholar 

  • Scheffknecht S, Mammerler R, Steinkellner S, Vierheilig H (2006) Root exudates of mycorrhizal tomato plants exhibit a different effect on microconidia germination of Fusarium oxysporum f. sp. lycopersici than root exudates from non-mycorrhizal tomato plants. Mycorrhiza 16:365–370

    Article  CAS  PubMed  Google Scholar 

  • Selim S, Negrel J, Govaerts C, Gianinazzi S, Van Tuinen D (2005) Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strain B2 isolated from the sorghum mycorrhizosphere. Appl Environ Microbiol 71:6501–6507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui ZA, Mahmood I (1998) Effect of plant growth promoting bacterium, an AM fungus and soil types on the morphometrics and reproduction of Meloidogyne javanica on tomato. Appl Soil Ecol 8:77–84

    Article  Google Scholar 

  • Singh DP, Srivastava JS, Bahadur A, Singh UP, Singh SK (2004) Arbuscular mycorrhizal fungi induced biochemical changes in pea (Pisum sativum) and their effect on powdery mildew (Erysiphe pisi). J Plant Dis Protect 111:266–272

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, San Diego/London

    Google Scholar 

  • Sood SG (2003) Chemotactic response of plant-growth promoting bacteria towards the roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol 45:219–227

    Article  CAS  Google Scholar 

  • St-Arnaud M, Elsen A (2005) Interaction of arbuscular mycorrhizal fungi with soil-borne pathogens and nonpathogenic rhizosphere micro-organisms. In: Declerck S, Strullu SG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Berlin Heidelberg, pp 217–231

    Chapter  Google Scholar 

  • St-Arnaud M, Vujanovic V (2007) Effect of the arbuscular mycorrhizal symbiosis on plant diseases and pests. In: Hamel C, Plenchette C (eds) Arbuscular mycorrhizae in crop production. Haworth’s Food Products Press, New York, pp 67–122

    Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1995) Altered growth of Fusarium oxysporum f. sp. chrysanthemi in an in vitro dual culture system with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza 5:431–438

    Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1997) Inhibition of Fusarium oxysporum f. sp. dianthi in the non-VAM species Dianthus caryophyllus by co-culture with Tagetes patula companion plants colonized by Glomus intraradices. Can J Bot 75:998–1005

    Article  Google Scholar 

  • Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD (2006) Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett 254:34–40

    Article  CAS  PubMed  Google Scholar 

  • Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304

    Article  CAS  PubMed  Google Scholar 

  • Toussaint JP, Kraml M, Nell M, Smith SE, Smith FA, Steinkellner S, Schmiderer C, Vierheilig H, Novak J (2008) Effect of Glomus mosseae on concentrations of rosmarinic and caffeic acids and essential oil compounds in basil inoculated with Fusarium oxysporum f. sp. basilici. Plant Pathol 57:1109–1116

    Article  Google Scholar 

  • Trotta A, Varese GC, Gnavi E, Fusconi A, Sampo S, Berta G (1996) Interactions between the soilborne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209

    Article  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Vestergard M, Henry F, Rangel-Castro JI, Michelsen A, Prosser JI, Christensen S (2008) Rhizosphere bacterial community composition responds to arbuscular mycorrhiza, but not to reductions in microbial activity induced by foliar cutting. FEMS Microbio Ecol 64:78–89

    Article  CAS  Google Scholar 

  • Vierheilig H, Steinkellner S, Khaosaad T, Garcia-Garrido GM (2008) The biocontrol effect of mycorrhization on soilborne fungal pathogens and the autoregulation of AM symbiosis: one mechanism, two effects? In: Varma A (ed) Mycorrhiza: genetics and molecular biology – Eco-function – Biotechnology – Eco-physiology – Structure and systematics. Springer, Berlin, pp 307–320

    Chapter  Google Scholar 

  • Vigo C, Norman JR, Hooker JE (2000) Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol 49:509–514

    Article  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Wu QS, Zou YN, Xia RX (2006) Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. Eur J Soil Biol 42:166–172. https://doi.org/10.1016/j.ejsobi.2005.12.006

    Article  CAS  Google Scholar 

  • Xavier LJC, Germida JJ (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem 35:471–478

    Article  CAS  Google Scholar 

  • Yao MK, Tweddell RJ, Desilets H (2002) Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctonia solani. Mycorrhiza 12:235–242

    Article  CAS  PubMed  Google Scholar 

  • Zhu HH, Zao Q (2004) Localized and a systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J Phytopathol 152:537–542

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Charpe, A.M. (2019). Biotic and Abiotic Stress Management by AM-Mediated PGPRs. In: Sayyed, R. (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management . Microorganisms for Sustainability, vol 13. Springer, Singapore. https://doi.org/10.1007/978-981-13-6986-5_12

Download citation

Publish with us

Policies and ethics