Skip to main content

In-vitro Assays for Antimicrobial Assessment

  • Chapter
  • First Online:
Phytochemistry: An in-silico and in-vitro Update

Abstract

In vitro antimicrobial assessment of natural extracts or pure compounds involves the use of assays to evaluate their potential to kill or inhibit microbial growth in a laboratory setting. Several methods have been developed for this purpose, which include Agar Well Diffusion and Disc Diffusion methods, Dynamic Contact assay, Thin-Layer Chromatography-Bioautography, Time-Kill assay and Biofilm assays, Microdilution methods and broth assays for Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Minimum Doubling Time/Growth Curve (MDT), Flow Cytofluorometric Assay and Bioluminescence Assay. This chapter will provide the readers a brief but comprehensive methodology of these in-vitro assays along with their advantages and disadvantages. It will serve as a guide in choosing the most appropriate antimicrobial assay for their research objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abate F, Jewell E. The new Oxford American dictionary. 1st ed. Oxford: Oxford University Press; 2001.

    Google Scholar 

  • Antimicrobial Drugs. Testing the effectiveness of antimicrobials, lumen, microbiology.

    Google Scholar 

  • ASTM E2149 – 13a. Standard test method for determining the antimicrobial activity of antimicrobial agents under dynamic contact conditions, active standard ASTM E2149 | Developed by Subcommittee: E35.15, Book of Standards Volume: 11.08.2018.

  • Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6(2):71–9.

    Article  Google Scholar 

  • Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Tech Bull Regist Med Technol. 1966;36(3):49–52.

    CAS  PubMed  Google Scholar 

  • Baumgartner V, Schwack W. Enhanced quantitative evaluation of the HPTLC-bioluminescence detection. J Liq Chromatogr Relat Technol. 2010;33(7–8):980–95.

    Article  CAS  Google Scholar 

  • Bonev B, Hooper J, Parisot J. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J Antimicrob Chemother. 2008;61(6):1295–301.

    Article  CAS  Google Scholar 

  • Boston MA, Houghton M. The American heritage dictionary of the English language 4th ed.; 2006.

    Google Scholar 

  • Brunton LL, Chabner B, Knollmann BC. Goodman and Gilman’s the pharmacological basis of therapeutics. 12th ed. New York: Mc Graw Hill Medical; 2017.

    Google Scholar 

  • Buommino E, Scognamiglio M, Donnarumma G, Fiorentino A, D’Abrosca B. Recent advances in natural product-based anti-biofilm approaches to control infections. Mini-Rev Med Chem. 2014;14(14):1169–82.

    Article  CAS  Google Scholar 

  • Cai Y, Leck H, Lim TP, Teo J, Lee W, Hsu LY, Kwa ALH. Using an adenosine triphosphate bioluminescent assay to determine effective antibiotic combinations against carbapenem-resistant gram negative bacteria within 24 hours. PLoS One. 2015;10(10):e0140446.

    Article  Google Scholar 

  • Choma IM, Jesionek W. TLC-direct bioautography as a high throughput method for detection of antimicrobials in plants. Chromatography. 2015;2(2):225–38.

    Article  CAS  Google Scholar 

  • CLSI. CLSI document M26-A. Wayne: Clinical and Laboratory Standards Institute; 1998.

    Google Scholar 

  • CLSI. CLSI document M07-A9. Wayne: Clinical and Laboratory Standards Institute; 2012.

    Google Scholar 

  • Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev. 1999;12(4):564–82.

    Article  CAS  Google Scholar 

  • Dalecki AG, Crawford CL, Wolschendorf F. Targeting biofilm associated Staphylococcus aureus using resazurin based drug-susceptibility assay. J Vis Exp 2016; (111).

    Google Scholar 

  • Davey H. Flow cytometry for clinical microbiology. CLI; (2–3), 12. 2004.

    Google Scholar 

  • Dewanjee S, Gangopadhyay M, Bhattacharya N, Khanra R, Dua TK. Bioautography and its scope in the field of natural product chemistry. J Pharm Anal. 2015;5(2):75–84.

    Article  Google Scholar 

  • Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8(9):881.

    Article  Google Scholar 

  • Forbes BA, Sahm DF, Weissfeld AS. Bailey and Scott’s. Diagnostic microbiology. 12th ed. St Louis: Mosby Elsevier; 2007.

    Google Scholar 

  • Gaupp R, Lei S, Reed JM, Peisker H, Boyle-Vavra S, Bayer AS, Somerville GA. Staphylococcus aureus metabolic adaptations during the transition from a daptomycin susceptibility phenotype to a daptomycin non susceptibility phenotype. Antimicrob Agents Chemother. 2015;59(7):4226–38.

    Article  CAS  Google Scholar 

  • General Information/Reference Standards. JP XVII. 2017.

    Google Scholar 

  • Horváth G, Jámbor N, Végh A, Böszörményi A, Lemberkovics É, Héthelyi É, Kocsis B. Antimicrobial activity of essential oils: the possibilities of TLC–bioautography. Flavour Fragr J. 2010;25(3):178–82.

    Article  Google Scholar 

  • Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis. 2009;49:1749–55.

    Article  CAS  Google Scholar 

  • Lalitha MK. Manual on antimicrobial susceptibility testing. Indian Association of Medical Microbiologists. 2004.

    Google Scholar 

  • Li J, Shuyu X, Saeed A, Funan W, Yufeng G, Chaonan Z, Ximan C, Yalan W, Jinxia C, Guyue C. Antimicrobial activity and resistance: influencing factors. Front Pharmacol. 2017;8:364.

    Article  Google Scholar 

  • Livermore DM. Discovery research: the scientific challenge of finding new antibiotic. J Antimicrob Chemother. 2011;66(9):1941–4.

    Article  CAS  Google Scholar 

  • Ncube NS, Afolayan AJ, Okoh AI. Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. Afr J Biotechnol. 2008;7(12):1797–806.

    Article  CAS  Google Scholar 

  • Nuding S, Zabel LT. Detection, identification, and susceptibility testing of bacteria by flow cytometry. J Bacteriol Parasitol. 2013;S5:005. https://doi.org/10.4172/2155-9597.

    Article  Google Scholar 

  • O’Toole GA. Microtiter dish biofilm formation assay. J Vis Exp; 2011; (47).

    Google Scholar 

  • Okusa P, Stevigny C, Devleeschouwer M, Duez P. Optimization of the culture medium used for direct TLC-bioautography. Application to the detection of antimicrobial compounds from Cordia gilletii De Wild (Boraginaceae). JPC-J Planar Chromatogr-Mod TLC. 2010;23(4):245–9.

    Article  CAS  Google Scholar 

  • Othman AS. Determination of the antibacterial effect of some natural products against some gram-positive and gram-negative bacteria. Egypt Pharm J. 2016;15(1):10.

    Article  Google Scholar 

  • Pfaller MA, Sheehan DJ, Rex JH. Determination of fungicidal activities against yeasts and molds: lessons learned from bactericidal testing and the need for standardization. Clin Microbiol Rev. 2004;17(2):268–80.

    Article  CAS  Google Scholar 

  • Pharmaceutical Microbiology Manual. ORA.007, Version 1.2 DATE: 03-30-2015 Chapter 1: antimicrobial effectiveness testing, Office of Regulatory Affairs Office of Regulatory Science Medical Products and Tobacco Scientific Staff. 2014.

    Google Scholar 

  • Ristić T, Lidija FZ, Monika N, Marjetka KK, Silva S, Nina GC, Simona S. Science against microbial pathogens: communicating current research and technological advances A. Méndez-Vilas (Ed.), Antimicrobial efficiency of functionalized cellulose fibres as potential medical textiles, ©FORMATEX; 2011. 36–51.

    Google Scholar 

  • Stevenson K, McVey AF, Clark IB, Swain PS, Pilizota T. General calibration of microbial growth in microplate readers. Sci Rep. 2016;6:38828.

    Article  CAS  Google Scholar 

  • Urbain A, Simões-Pires CA. Thin-layer chromatography of plants, with chemical and biological detection methods. Encyclopedia of Analytical Chemistry. 2014.

    Google Scholar 

  • Van Belkum A, Dunne WM. Next-generation antimicrobial susceptibility testing. J Clin Microbiol. 2013;51(7):2018–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurhekar, J., Tupas, G.D., Otero, M.C.B. (2019). In-vitro Assays for Antimicrobial Assessment. In: Kumar, S., Egbuna, C. (eds) Phytochemistry: An in-silico and in-vitro Update. Springer, Singapore. https://doi.org/10.1007/978-981-13-6920-9_15

Download citation

Publish with us

Policies and ethics