Skip to main content

Effects of a Spectral Window on Frequency Domain HRV Parameters

  • Conference paper
  • First Online:
Advances in Computer Communication and Computational Sciences

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 924))

Abstract

Heart rate variability (HRV) can provide physiological information about the autonomic nervous system. For the HRV spectral analysis, spectral windows are applied as weighting functions to solve the spectral leakage problem. The present study aimed to investigate HRV spectra with respect to spectral windows and to determine the frequency characteristics of an optimal window. Two short-term recordings, comprising twelve 5-minute and twelve 2-minute segments created from the one-hour HRV dataset, were analyzed. The HRV indices with respect to three different windows (Hanning, Hamming, and Blackman) were compared with reference to the Hanning window used widely. Hanning-Blackman window showed significant differences in VLF (t = −18.341 with p < 0.0001) for the 5-minute dataset. However, the Hanning-Hamming window showed no significant difference in all frequency bands for both 5-minute and 2-minute datasets. We suggest a low sidelobe related to amplitude accuracy and a narrow width of the main lobe as the frequency characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Billman, G.E., Huikuni, H.V., Sacha, J., Trimmel, K.: An introduction to heart rate variability: methodological considerations and clinical applications. Front. Physiol. 6(55), 1–3 (2015)

    Google Scholar 

  2. Billman, G.E.: The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 4(26), 1–5 (2013)

    Google Scholar 

  3. Zara, A., Lombardi, F.: Autonomic indexes based on the analysis of heart rate variability: a view from the sinus node. Cardiovasc. Res. 50(3), 434–442 (2001)

    Article  Google Scholar 

  4. Elghozi, J.L., Julien, C.: Sympathetic control of short-term heart rate variability and its pharmacological modulation. Fundam. Clin. Pharmacol. 21, 337–347 (2007)

    Article  Google Scholar 

  5. Benichou, T., Pereira, B., Mermillod, M., Tauveron, I., Pfabigan, D., Magdasy, S., Dutheil, F.: Heart rate variability in type 2 diabetes mellitus: a systematic review and meta-analysis. PLoS One 13(4), 1–19 (2018)

    Article  Google Scholar 

  6. Bartels, R., Neumamm, L., Pecanha, T., Carvalho, S.: SinusCor: an advanced tool for heart rate variability analysis. BioMed. Eng. OnLine. 16(1), 110–124 (2017)

    Article  Google Scholar 

  7. Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology (Membership of the Task Force listed in the Appendix).: Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation. 93(5), 1043–1065 (1996)

    Google Scholar 

  8. Keselbrener, L., Akselrod, S.: Selective discrete fourier transform algorithm for time-frequency analysis: method and application on simulated and cardiovascular signals. IEEE Trans. Biomed. Eng. 43(8), 789–802 (1996)

    Article  Google Scholar 

  9. Heathers, J.A.: Everything Hertz: methodological issues in short-term frequency-domain HRV. Front Physiol. 5, 177–200 (2014)

    Article  Google Scholar 

  10. Maheshwari, A., Norby, F.L., Soliman, E.Z., Adabag, S., Whitsel, E.A., Alonso, A., Chen, L.Y.: Low heart rate variability in a 2-minute electrocardiogram recording is associated with an increased risk of sudden cardiac death in the general population: the atherosclerosis risk in communities study. PLoS One 11(8), 1–12 (2016)

    Article  Google Scholar 

  11. Malliani, A., Pagani, M., Lombardi, F., Cerutti, S.: Cardiovascular neural regulation explored in the frequency domain. Circulation 84, 482–492 (1991)

    Article  Google Scholar 

  12. Karita, K., Nakao, M., Nishikitani, M., Nomura, K., Yano, E.: Autonomic nervous activity changes in relation to the reporting of subjective symptoms among male workers in an information service company. Int. Arch. Occup. Environ. Health 79(5), 441–444 (2006)

    Article  Google Scholar 

  13. Huikuri, H.V., Jokinen, V., Syvanne, M., Nieminen, M.S., Juhani Airaksien, K.E., Ikaheimo, M.J., Koistinen, J.M., Kauma, H., Kesaniemi, A.Y., Majahalme, S., Niemela, K.O., Heikki Frick, M., the Lopid Coronary Angioplasty (LOCAT) study Group.: Heart rate variability and progression of coronary atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 19, 1979–1985 (1999)

    Article  Google Scholar 

  14. Huang, W.L., Liao, S.C., Yang, C.C., Kuo, T.B., Chen, T.T., Chen, I.M., Gau, S.S.: Measures of heart rate variability in individuals with somatic symptom disorder. Psychosom. Med. 79(1), 34–42 (2017)

    Article  Google Scholar 

  15. Kuss, O., Schumann, B., Kluttiq, A., Greiser, K.H., Haerting, J.: Time domain parameters can be estimated with less statistical error than frequency domain parameters in the analysis of heart rate variability. J. Electrocardiol. 41(4), 287–291 (2008)

    Article  Google Scholar 

  16. Chemla, D., Young, J., Badilini, F., Maison-Blanche, P., Affres, H., Lecarpentier, Y., Chanson, P.: Comparison of fat Fourier transform and autoregressive spectral analysis for the study of heart rate variability in diabetic patients. Int. J. Cardiol. 104(3), 307–313 (2005)

    Article  Google Scholar 

  17. Sacha, J., Barabach, S., Statkiewicz-Barabach, G., Sacha, K., Muller, A., Piskorski, J.: How to strengthen or weaken the HRV dependence on heart rate-description of the method and its perspectives. Int. J. Cardiol. 168, 1660–1663 (2013)

    Article  Google Scholar 

  18. Sacha, J., Pluta, W.: Alterations of an average heart rate change heart rate variability due to mathematical reasons. Int. J. Cardiol. 128, 444–447 (2013)

    Article  Google Scholar 

  19. Biqqer Jr., J.T., Fleiss, J.L., Steinman, R.C., Rolnitzky, L.M., Kleiqer, R.E., Rothman, J.N.: Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation 85(1), 164–171 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Hallym University Research Fund, 2018 (HRF-201,801-011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Mok Ahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, J.K., Ahn, J.M. (2019). Effects of a Spectral Window on Frequency Domain HRV Parameters. In: Bhatia, S., Tiwari, S., Mishra, K., Trivedi, M. (eds) Advances in Computer Communication and Computational Sciences. Advances in Intelligent Systems and Computing, vol 924. Springer, Singapore. https://doi.org/10.1007/978-981-13-6861-5_59

Download citation

Publish with us

Policies and ethics