Skip to main content

Anatomy and Function

  • Chapter
  • First Online:
Diagnosis of Liver Disease

Abstract

The liver weighing 1200–1500 g is the largest organ in the human adult and occupies about 2% of body weight. There are two anatomical lobes in the liver, right and left, with the right lobe six times in volume than the left lobe. The right and left lobes are separated anteriorly by the falciform ligament, posteriorly by ligamentum venosum, and inferiorly by ligamentum teres. The Couinaud classification [1] defines eight segments of the liver, and the Bismuth classification [2] divides it into four sectors; they are subdivided into right anterior (V and VIII), right posterior (VI and VII), left medial (IV), or left lateral (II and III) segment and caudate lobe (I) (Fig. 1.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFP:

Alpha fetoprotein

cAMP:

cyclic adenosine 3′,5′-monophosphate

cGMP:

cyclic guanosine 3′,5′-monophosphate

Cx:

Connexin

EGFR:

Epidermal growth factor receptor

GVHD:

Graft-versus-host disease

HCV:

Hepatitis C virus

IL-6:

Interleukin-6

JAMs:

Junctional adhesion molecules

PDZ:

Postsynaptic density 95; Discs large, zonula occludens

PKC:

Protein kinase C

PSC:

Primary sclerosing cholangitis

SR-BI:

Scavenger receptor BI

TNF:

Tumor necrosis factor

ZO:

Zonula occludens

References

  1. Le Foie CC. Etudes anatomiques et chirurgicales. Paris: Masson; 1957.

    Google Scholar 

  2. Bismuth H. Surgical anatomy and anatomical surgery of the liver. World J Surg. 1982;6:3–9.

    CAS  PubMed  Google Scholar 

  3. Timmermans JP, Geerts A. Nerves in liver: superfluous structures? A special issue of the anatomical record updating our reviews on hepatic innervation. Anat Rec B New Anat. 2005;282:4.

    PubMed  Google Scholar 

  4. Nakanuma Y, Katayanagi K, Terada T, Saito K. Intrahepatic peribiliary glands of humans. I. Anatomy, development and presumed functions. J Gastroenterol Hepatol. 1994;9:75–9.

    CAS  PubMed  Google Scholar 

  5. Severn CB. A morphological study of the development of the human liver. 1. Development of the hepatic diverticulum. Am J Anat. 1971;13:133–58.

    Google Scholar 

  6. Strasberg SM. Terminology of liver anatomy and liver resections: coming to grips with hepatic babel. J Am Coll Surg. 1997;184:413–34.

    CAS  PubMed  Google Scholar 

  7. Haruna Y, Saito K, Spaulding S, et al. Identification of bipotential progenitor cells in human liver development. Hepatology. 1996;23:476–81.

    CAS  PubMed  Google Scholar 

  8. Desmet VJ. Congenital diseases of intrahepatic bile ducts: variations on the theme “ductal plate malformation”. Hepatology. 1992;16:1069–83.

    CAS  PubMed  Google Scholar 

  9. Masyuk T, Masyuk A, LaRusso N. Cholangiociliopathies: genetics, molecular mechanisms and potential therapies. Curr Opin Gastroenterol. 2009;25:265–71.

    CAS  PubMed  Google Scholar 

  10. Rappaport AM. The of normal and pathologic hepatic structure. Beitr Pathol. 1976;157:215–43.

    CAS  PubMed  Google Scholar 

  11. Torre C, Perret C, Colnot S. Transcription dynamics in a physiological process: beta-catenin signaling directs liver metabolic zonation. Int J Biochem Cell Biol. 2011;43:271–8.

    CAS  PubMed  Google Scholar 

  12. Mitic L, Anderson JM. Molecular architecture of tight junctions. Annu Rev Physiol. 1998;60:121–41.

    CAS  PubMed  Google Scholar 

  13. Feldmann G. The cytoskeleton of the hepatocyte. Structure and functions. J Hepatol. 1989;8:380–6.

    CAS  PubMed  Google Scholar 

  14. Wisse E, Braet F, Luo D, et al. Structure and function of sinusoidal lining cells in the liver. Toxicol Pathol. 1996;24:100–11.

    CAS  PubMed  Google Scholar 

  15. Schaffner F, Papper H. Capillarization of hepatic sinusoids in man. Gastroenterology. 1963;44:239–42.

    CAS  PubMed  Google Scholar 

  16. Toth CA, Thomas P. Liver endocytosis and kupffer cells. Hepatology. 1992;24:255–66.

    Google Scholar 

  17. Smedsrod B, LeCouteur D, Ikejima K, et al. Hepatic sinusoidal cells in health and disease: update from the 14th international symposium. Liver Int. 2009;29:490–9.

    PubMed  Google Scholar 

  18. Mathew J, Geerts A, Burt AD. Pathobiology of hepatic stellate cells. Hepato-Gastroenterology. 1996;43:72–91.

    CAS  PubMed  Google Scholar 

  19. Sakamoto M, Ueno T, Kin M, et al. Ito cell contraction in response to endothelin-1 and substance P. Hepatology. 1993;18:973–83.

    Google Scholar 

  20. Rockey DC, Weisiger RA. Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance. Hepatology. 1996;24:233–40.

    CAS  PubMed  Google Scholar 

  21. Skirtic S, Wallenius V, Ekberg S, et al. Insulin-like growth factors stimulate expression of hepatocyte growth factor but not transforming growth factors beta 1 in cultured hepatic stellate cells. Endocrinology. 1997;138:4683–9.

    Google Scholar 

  22. Wisse E, Luo D, Vermijlen D, et al. On the function of pit cells, the liver specific natural killer cells. Semin Liver Dis. 1997;17:265–86.

    CAS  PubMed  Google Scholar 

  23. Alpini G, Prall RT, LaRusso NF. The pathobiology of biliary epithelia. In: Arias IM, Boyer JL, Chisari FV, et al., editors. The liver biology and pathobiology. 4th ed. London: Lippincott Williams & Wilkins; 2001. p. 421–35.

    Google Scholar 

  24. Sugiura H, Nakanuma Y. Secretory components and immunoglobulins in the intrahepatic biliary tree and peribiliary glands in normal livers and hepatolithiasis. Gastroenterol Jpn. 1989;24:308–14.

    CAS  PubMed  Google Scholar 

  25. Ishida F, Terada T, Nakanuma Y. Histologic and scanning electron microscopic observations of intrahepatic peribiliary glands in normal human livers. Lab Investig. 1989;60:260–5.

    CAS  PubMed  Google Scholar 

  26. Hofmann AF, Yeh H-Z, Schteingart CD, et al. The cholehepatic circulation of organic anions: a decade of progress. In: Alvaro D, Benedeti A, Strazzabosco M, editors. Vanishing bile duct syndrome-pathophysiology and treatment. Dordrecht: Kluwer Academic; 1997. p. 90–103.

    Google Scholar 

  27. Gumbiner BM. Breaking through the tight junction barrier. J Cell Biol. 1993;123:1631–3.

    CAS  PubMed  Google Scholar 

  28. Schneeberger EE, Lynch RD. Structure, function, and regulation of cellular tight junctions. Am J Phys. 1992;262:L647–L661.100.

    CAS  Google Scholar 

  29. van Meer G, Simon K. The function of tight junctions in maintaining differences in lipid composition between the apical and basolateral cell surface domains of MDCK cells. EMBO J. 1986;5:1455–64.

    PubMed  PubMed Central  Google Scholar 

  30. Cereijido M, Valdés J, Shoshani L, et al. Role of tight junctions in establishing and maintaining cell polarity. Annu Rev Physiol. 1998;60:161–77.

    CAS  PubMed  Google Scholar 

  31. Matter K, Balda MS. Signalling to and from tight junctions. Nat Rev Mol Cell Biol. 2003;4:225–36.

    CAS  PubMed  Google Scholar 

  32. Schneeberger EE, Lynch RD. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol. 2004;286:C1213–28.

    CAS  PubMed  Google Scholar 

  33. Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol. 2001;4:285–93.

    Google Scholar 

  34. Sawada N, Murata M, Kikuchi K, Osanai M, Tobioka H, Kojima T, Chiba H. Tight junctions and human diseases. Med Electron Microsc. 2003;36:147–56.

    PubMed  Google Scholar 

  35. Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol. 2005;171:939–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kojima T, Ninomiya T, Konno T, Kohno T, Taniguchi M, Sawada N. Expression of tricellulin in epithelial cells and non-epithelial cells. Histol Histopathol. 2013;28:1383–92.

    CAS  PubMed  Google Scholar 

  37. Kojima T, Sawada N, Yamaguchi H, Fort AG, Spray DC. Gap and tight junctions in liver: composition, regulation, and function. In: Arias IM, et al., editors. The liver: biology and pathobiology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2009a. p. 201–20.

    Google Scholar 

  38. Kojima T, Murata M, Yamamoto T, Lan M, Imamura M, Son S, Takano K, Yamaguchi H, Ito T, Tanaka S, Chiba H, Hirata K, Sawada N. Tight junction proteins and signal transduction pathways in hepatocytes. Histol Histopathol. 2009b;24:1463–72.

    CAS  PubMed  Google Scholar 

  39. Carlton VE, Harris BZ, Puffenberger EG, Batta AK, Knisely AS, Robinson DL, Strauss KA, Shneider BL, Lim WA, Salen G, Morton DH, Bull LN. Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat Genet. 2003;34:91–6.

    CAS  PubMed  Google Scholar 

  40. Hadj-Rabia S, Baala L, Vabres P, Hamel-Teillac D, Jacquemin E, Fabre M, Lyonnet S, De Prost Y, Munnich A, Hadchouel M, Smahi A. Claudin-1 gene mutations in neonatal sclerosing cholangitis associated with ichthyosis: a tight junction disease. Gastroenterology. 2004;127:1386–90.

    CAS  PubMed  Google Scholar 

  41. Helle F, Dubuisson J. Hepatitis C virus entry into host cells. Cell Mol Life Sci. 2008;65:100–12.

    CAS  PubMed  Google Scholar 

  42. Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wölk B, Hatziioannou T, McKeating JA, Bieniasz PD, Rice CM. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature. 2007;446:801–5.

    CAS  PubMed  Google Scholar 

  43. Benedicto I, Molina-Jiménez F, Barreiro O, Maldonado-Rodríguez A, Prieto J, Moreno-Otero R, Aldabe R, López-Cabrera M, Majano PL. Hepatitis C virus envelope components alter localization of hepatocyte tight junction-associated proteins and promote occludin retention in the endoplasmic reticulum. Hepatology. 2008;48:1044–53.

    CAS  PubMed  Google Scholar 

  44. Liu S, Yang W, Shen L, Turner JR, Coyne CB, Wang T. Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection. J Virol. 2009;83:2011–4.

    CAS  PubMed  Google Scholar 

  45. Kumar NM, Gilula NB. The gap junction communication channel. Cell. 1996;84:381–8.

    CAS  Google Scholar 

  46. Ayad WA, Locke D, Koreen IV, Harris AL. Heteromeric, but not homomeric, connexin channels are selectively permeable to inositol phosphates. J Biol Chem. 2006;281:16727–39.

    CAS  PubMed  Google Scholar 

  47. Maes M, Cogliati B, Crespo Yanguas S, Willebrords J, Vinken M. Roles of connexin and pannexin in digestive homeostasis. Cell Mol Life Sci. 2015;72:2809–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Iwai M, Harada Y, Muramatsu A, Tanaka S, Mori T, Okanoue T, Katoh F, Ohkusa T, Kashima K. Development of gap junctional channels and intercellular communication in rat liver during ontogenesis. J Hepatol. 2000;32:11–8.

    CAS  PubMed  Google Scholar 

  49. Temme A, Buchmann A, Gabriel HD, Nelles E, Schwarz M, Willecke K. High incidence of spontaneous and chemically induced liver tumors in mice deficient for connexin32. Curr Biol. 1997;7:713–6.

    CAS  PubMed  Google Scholar 

  50. Vinken M, De Kock J, Oliveira AG, Menezes GB, Cogliati B, Dagli ML, Vanhaecke T, Rogiers V. Modifications in connexin expression in liver development and cancer. Cell Commun Adhes. 2012;19:55–62.

    CAS  PubMed  Google Scholar 

  51. Caro JF, Poulos J, Ittoop O, et al. Insulin-like growth factor 1 binding in hepatocytes from human liver, human hepatoma, and normal regenerating and fetal rat liver. J Clin Invest. 1988;81:976–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Muramatsu A, Iwai M, Morikawa T, Tanaka S, Mori T, Harada Y, Okanoue T. Influence of transfection with connexin 26 gene on malignant potential of human hepatoma cells. Carcinogenesis. 2002;23:351–8.

    CAS  PubMed  Google Scholar 

  53. Maes M, Decrock E, Cogliati B, Oliveira AG, Marques PE, Dagli ML, Menezes GB, Mennecier G, Leybaert L, Vanhaecke T, Rogiers V, Vinken M. Connexin and pannexin (hemi) channels in the liver. Front Physiol. 2014;4:405.

    PubMed  PubMed Central  Google Scholar 

  54. Kojima T, Kokai Y, Chiba H, Yamamoto M, Mochizuki Y, Sawada N. Cx32 but not Cx26 is associated with tight junctions in primary cultures of rat hepatocytes. Exp Cell Res. 2001;263(2):193–201.

    CAS  PubMed  Google Scholar 

  55. Kojima T, Sawada N, Chiba H, Kokai Y, Yamamoto M, Urban M, Lee GH, Hertzberg EL, Mochizuki Y, Spray DC. Induction of tight junctions in human connexin 32 (hCx32)-transfected mouse hepatocytes: connexin 32 interacts with occludin. Biochem Biophys Res Commun. 1999;266:222–9.

    CAS  PubMed  Google Scholar 

  56. Kojima T, Spray DC, Kokai Y, Chiba H, Mochizuki Y, Sawada N. Cx32 formation and/or Cx32-mediated intercellular communication induces expression and function of tight junctions in hepatocytic cell line. Exp Cell Res. 2002;276:40–51.

    CAS  PubMed  Google Scholar 

  57. Kojima T, Yamamoto T, Murata M, Chiba H, Kokai Y, Sawada N. Regulation of the blood-biliary barrier: interaction between gap and tight junctions in hepatocytes. Med Electron Microsc. 2003;36:157–64.

    PubMed  Google Scholar 

  58. Fausto N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology. 2004;39:1477–87.

    PubMed  Google Scholar 

  59. Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta. 1991;1072:129–57.

    CAS  PubMed  Google Scholar 

  60. Kuhlmann WD, Peschke P. Hepatic progenitor cells, stem cells, and AFP expression in models of liver injury. Int J Exp Pathol. 2006;87:343–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kakisaka K, Kataoka K, Onodera M, Suzuki A, Endo K, Tatemichi Y, Kuroda H, Ishida K, Takikawa Y. Alpha-fetoprotein: a biomarker for the recruitment of progenitor cells in the liver in patients with acute liver injury or failure. Hepatol Res. 2015;45:E12–20.

    CAS  PubMed  Google Scholar 

  62. Tournier I, Legrès L, Schoevaert D, Feldmann G, Bernuau D. Cellular analysis of alpha-fetoprotein gene activation during carbon tetrachloride and D-galactosamine-induced acute liver injury in rats. Lab Investig. 1988;59:657–65.

    CAS  PubMed  Google Scholar 

  63. Seo SI, Kim SS, Choi BY, Lee SH, Kim SJ, Park HW, Kim HS, Shin WG, Kim KH, Lee JH, Kim HY, Jang MK. Clinical significance of elevated serum alpha-fetoprotein (AFP) level in acute viral hepatitis a (AHA). Hepato-Gastroenterology. 2013;60:1592–6.

    CAS  PubMed  Google Scholar 

  64. Ueki T, Kaneda Y, Tsutsui H, et al. Hepatocyte growth factor gene therapy of liver cirrhosis in rats. Nat Med. 1999;5:226–30.

    CAS  PubMed  Google Scholar 

  65. Marti U, Burwen SJ, Jones AL. Hepatic sequestration and biliary secretion of epidermal growth factors: evidence for a high-capacity uptake system. Proc Natl Acad Sci U S A. 1983;80:3797–801.

    Google Scholar 

  66. Mead JE, Fausto N. Transforming growth factor alpha may be a physiological regulator of liver regeneration by means of an autocrine mechanism. Proc Natl Acad Sci U S A. 1989;86:4–13.

    Google Scholar 

  67. Kan M, Huang J, Mansson PE, et al. Heparin-binding growth factor type 1(acidic fibroblast growth factor): a potential biphasic autocrine and paracrine regulator of hepatocyte regeneration. Proc Natl Acad Sci U S A. 1989;86:7432–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Caro JE, Poulos J, Ittoop O, et al. Insulin-like growth factor 1 binding in hepatocytes from human liver, human hepatoma, and normal regenerating, and fetal rat liver. J Clin Invest. 1988;81:976–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bucher NLR, Strain AJ. Regulatory mechanisms in hepatic regeneration. In: Millward-Sadler GH, Wright R, Arthur MJP, editors. Wright’s liver and biliary disease. London: Saunders; 1992. p. 258–74.

    Google Scholar 

  70. Riehle KJ, Dan YY, Campbell JS, Fausto N. New concepts in liver regeneration. J Gastroenterol Hepatol. 2011;26(Suppl 1):203–12.

    PubMed  PubMed Central  Google Scholar 

  71. Michalpoulos GK. Liver regeneration after partial hepatectomy. Am J Pathol. 2010;176:2–13.

    Google Scholar 

  72. Duncan AW, Dorrell C, Grompe M. Stem cells and liver regeneration. Gastroenterology. 2009;137:466–81.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Iwai MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iwai, M., Kojima, T., Suriawinata, A.A. (2019). Anatomy and Function. In: Hashimoto, E., Kwo, P., Suriawinata, A., Tsui, W., Iwai, M. (eds) Diagnosis of Liver Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-6806-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6806-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6805-9

  • Online ISBN: 978-981-13-6806-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics