Skip to main content

An Extensive Review on Organic Light-Emitting Diode for Energy-Saving and Eco-friendly Technology

  • Conference paper
  • First Online:
Applications of Computing, Automation and Wireless Systems in Electrical Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 553))

Abstract

OLEDs have turned out to be the boon in the field of display technology and solid-state lighting because of compelling characteristics. They have remarkably emerged as an energy-saving technology to cope up with the increased demand for electricity and its generation. OLEDs are solid-state devices which consume very less power and have very low driving voltage. LEDs have grabbed so much of attention because of minuscule energy consumption, but this even newer technology is intriguing the interest of both manufacturers and consumers. OLED displays offer startling vivid pictures of high-definition resolution with vibrant and radiant colors and highly efficient illumination. Companies are investing significant financial resources for the development of future technology. So, there is a need of the hour to study in depth the milestones and challenges of this emerging technology. The critical areas on which the enormous valuable improvements are being carried out involve efficient current injection, light extraction techniques, efficiency, lifetime issues, and power consumption. The central idea of the review is to make the reader familiar with the structural and the operational details of the device, types of OLED and their drawbacks, material science, and important parameters governing the huge success of the OLED technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalyani NT, Dhoble SJ (2012) Organic light emitting diodes: energy saving lighting technology—a review. Renew Sustain Energy Rev 16(5):2696–2723

    Article  Google Scholar 

  2. Bagher AM (2014) OLED display technology. Amer J Opt Photon 2(3):32–36

    Article  Google Scholar 

  3. Khazanchi A, Kanwar A, Saluja L, Damara A, Damara V (2012) OLED: a new display technology. Int J Eng Comp Sci 1(2):75–84

    Google Scholar 

  4. Schmidt TD, Scholz BJ, Mayr C, Brutting W (2013) Efficiency analysis of organic light-emitting diodes based on optical simulations. IEEE J Sel Topics Quant Elect 19(5):1–12

    Article  Google Scholar 

  5. Patel BN, Prajapati MM (2014) OLED: a modern display technology. Int J Sci Res Pubs 4(6):1–5

    Google Scholar 

  6. Dhyani G, Bisht N (2016) A review paper on: study of organic light emitting diode. Int Res J Eng Tech 3(6):55–57

    Google Scholar 

  7. Singh A, Vishwakarma HL (2014) Organic light emitting diodes: materials, fabrications and applications. Int J Sci Res 3(6):557–581

    Google Scholar 

  8. Batool F (2016) A review paper on: organic light-emitting diode (OLED) technology and applications. Int J Adv Res Comput Commun Eng 5(11):152–156

    Google Scholar 

  9. Ijeaku AM, Chidubem MH, Chukwunonyerem EK, Obioma NU (2015) Organic light emitting diode (OLED). Amer J Eng Res 4(9):153–159

    Google Scholar 

  10. Pope M, Kallmann HP, Magnante P (1963) Electroluminescence in organic crystals. J Chem Phys 38(8):2042–2043

    Article  Google Scholar 

  11. Meerheim R, Lüssem B, Leo K (2009) Efficiency and stability of p-i-n type organic light emitting diodes for display and lighting applications. Proc IEEE 97(9):1606–1626

    Article  Google Scholar 

  12. Saxena K, Jain VK, Mehta D (2009) A review on the light extraction techniques in organic electroluminescent devices. J Opt Mater 32:1221–1233

    Article  Google Scholar 

  13. Choudhary S, Qureshi S (2008) Life time issues in organic light emitting diodes. In: IEEE Conference of Proceedings TENCON, Hyderabad, India, pp 1–4

    Google Scholar 

  14. Kalinowski J (1999) Electroluminescence in organics LEDs. J Phys D Appl Phys 32(24):179–250

    Article  Google Scholar 

  15. Godlewski J, Obarowska M (2007) Organic light emitting devices. J Opto-Elect Rev 15(4):179–183

    Google Scholar 

  16. Cole M (2013) The lighting revolution: if we were experts before, we’re novices now. IEEE Trans Ind Appl 50(2):1509–1520

    Article  MathSciNet  Google Scholar 

  17. Broadway LF (1951) Cathode-ray tubes-a review of progress. Proc IEEE Part I Gen 98(114):316–320

    Google Scholar 

  18. Alberts IL, Barratt DS, Ray AK (2010) Hollow cathode effect in cold cathode fluorescent lamps: a review. J Disp Tech 6(2):52–59

    Article  Google Scholar 

  19. Langmuir DB (1937) Theoretical limitations of cathode-ray tubes. Proc Inst Radio Eng 25(8):977–991

    Google Scholar 

  20. Ho YKE, Lee STS, Chung HSH, Hui SYR (2001) A comparative study on dimming control methods for electronic ballasts. IEEE Trans Power Electron 16(6):828–836

    Article  Google Scholar 

  21. Colvin VL, Schlamp MC, Allvisators AP (1994) Light-emitting-diodes made from cadmium selenidenanocrystals and a semiconducting polymer. Lett Nat 370(6488):354–357

    Article  Google Scholar 

  22. Kim S, Im SH, Kim SW (2013) Performance of light-emitting-diode based on quantum dots. J Nanosci 5(12)

    Article  Google Scholar 

  23. Amini P, Dolatyari M, Rostami A, Rostami G, Mathur S, Torabi P (2015) High-performance solution processed inorganic quantum-dot LEDS. IEEE Trans Nanotech 14(5):911–917

    Article  Google Scholar 

  24. Kim T, Kim RH, Rogers JA (2012) Microscale inorganic light-emitting diodes on flexible and stretchable substrates. IEEE Photon J 4(2):607–612

    Article  Google Scholar 

  25. Shirasaki Y, Supran GJ, Bawendi MG, Bulovic V (2013) Emergence of colloidal quantum-dot light-emitting technologies. J Nat Photon 7:13–23

    Article  Google Scholar 

  26. Ishii Y, Awane K (1995) Technology advances in liquid-ciystal display. In: IEEE international conference solid-state circuits, San Francisco, USA, pp 64–65

    Google Scholar 

  27. Mori H (2005) The wide view (WV) film for enhancing the field of view of LCDs. J Disp Tech 1(2):179–186

    Article  Google Scholar 

  28. Luo Z, Xu D, Wu ST (2014) Emerging quantum-dots-enhanced LCDs. J Disp Tech 10(7):526–539

    Article  Google Scholar 

  29. Chen Z, Yu J, Ogino K, Miyata S (2002) Blue emission from light-emitting diodes based on lithium complex. J Phys D Appl Phys 35(11):1099–1102

    Article  Google Scholar 

  30. Pope M, Kallmann H, Mangnate P (1963) Electroluminescence in organic crystals. J Chem Phys 43(8):2620–2621

    Google Scholar 

  31. Partrige RH (1983) Electroluminescence from Polyvinylcarbazole Films: 2. Polyvinylcarbazole films containing antimony pentachloride. J Polym 24(6):733–762

    Google Scholar 

  32. Tang CW, Slyke SAV (1998) Organic electroluminescent diodes. Appl Phys Lett 51(12):913–915

    Article  Google Scholar 

  33. Kaur P, Singh H (2016) New era in solid state lighting: organic light emitting diode (OLED). Int J Core Eng Manage 3(2):37–46

    Google Scholar 

  34. Hack M, Hewitt R, Urbanik K, Chwang A, Brown JJ (2006) Full colour top emission AMOLED displays on flexible metal foil. In: Proceedings of international Meeting on Information Display Conference, Daegu, South Korea, pp 305–308

    Google Scholar 

  35. Sarma KR, Roush J, Schmidt J, Chanley C, Dodd S (2006) Flexible active matrix organic light emitting diode (AMOLED) displays. In: Proceedings of 9th Asian symposium information display, New Delhi, India, pp 337–342

    Google Scholar 

  36. Karzazi Y (2014) Organic light emitting diodes: devices and applications. J Mater Environ Sci 5(1):1–12

    Google Scholar 

  37. Jordan RH, Dodabalapur A, Strukelj M, Miller TM (1996) White organic electroluminescence devices. Appl Phys Lett 68(9):1192–1194

    Article  Google Scholar 

  38. Andrade BWD, Brooks J, Adamovich V, Thompson ME, Forrest SR (2002) White light emission using triplet excimers in electrophosphorescent organic light-emitting devices. J Adv Mater 14(15):1032–1036

    Article  Google Scholar 

  39. Dhyani G, Bisht N (2016) Review paper on: study of organic light emitting diode. Int Res J Eng Tech 3(6):1155–1157

    Google Scholar 

  40. Shire A, Jawarkar U, Arbat A (2015) A review paper on: organic light emitting diode over conventional LED. Int J Adv Res Comp Sci Soft Eng 5(1):178–181

    Google Scholar 

  41. Pandey RK, Kumar S, Kumar P, Kumar A, Rathore GS, Sharma C (2014) Organic light emitting diode: a new era in display techniques. Appl Phys Lett 1(1):26–29

    Google Scholar 

  42. Bu-xin Z, Zhi-lin Z, Wen-qing Z, Xue-yin J, Shao-hong X (2001) Organic thin film electroluminescent passive matrix display. J Shang Univ 5(2):151–155

    Google Scholar 

  43. Kuo A, Won TK, Kanicki J (2008) Advanced amorphous silicon thin-film transistors for AM-OLEDs: electrical performance and stability. IEEE Trans Electron Devices 55(7):1621–1629

    Article  Google Scholar 

  44. Baek G, Abe K, Kuo A, Kumomi H, Kanicki J (2011) Electrical properties and stability of dual-gate coplanar homojunction DC sputtered amorphous indium–gallium–zinc–oxide thin-film transistors and its application to AM-OLEDs. IEEE Trans Electron Devices 58(12):4344–4353

    Article  Google Scholar 

  45. Purohit V, Banu T, Daiya K (2012) AMOLED: an emerging trends in LED. Int J Sci Eng Res 3(10):1–4

    Google Scholar 

  46. Park WY, Cheong HW, Lee C, Whang KW (2016) Design of highly efficient RGB top-emitting organic light-emitting diodes using finite element method simulations. Opt Express 24(21):18–31

    Article  Google Scholar 

  47. Chen S, Deng L, Xie J, Peng L, Xie L, Fan Q, Huang W (2010) Recent developments in top emitting organic light emitting diodes. J Adv Mater 22(46):5227–5239

    Article  Google Scholar 

  48. Huang Q, Walzer K, Pfeiffer M, Lyssenko V, He G, Leo K (2006) Highly efficient top emitting organic light-emitting diodes with organic outcoupling enhancement layers. Appl Phys Lett 88(11):51–53

    Article  Google Scholar 

  49. Bulovic V, Gu G, Burrows PE, Forrest SR, Thompson ME (1996) Transparent light-emitting devices. Int J Nat Sci 380:29

    Google Scholar 

  50. Parthasarathy G, Adachi C, Burrows P, Forrest SR (2000) High-efficiency transparent organic light-emitting devices. Appl Phys Lett 76(15):28–30

    Article  Google Scholar 

  51. Raychaudhuri P, Madathil J, Shore JD, Slyke SAV (2012) Performance enhancement of top-and bottom-emitting organic light-emitting devices using microcavity structures. J Soc Info Disp 12(3):315–321

    Article  Google Scholar 

  52. Zhang YB, Ou QD, Li YQ, Chen JD, Zhao XD, Wien J, Xie ZZ, Tang JX (2017) Transparent organic light-emitting diodes with balanced white emission by minimizing waveguide and surface plasmonic loss. Opt Express 25(14):62–75

    Google Scholar 

  53. Sun H, Chen Y, Chen J, Ma D (2015) Interconnectors in tandem organic light emitting diodes and their influence on device performance. IEEE J Sel Topics Quantum Electron 22(1):154–163

    Article  Google Scholar 

  54. Forrest SR, Burrows PE, Shen Z, Gu G, Bulovic V, Thompson ME (1997) The stacked OLED (SOLED): a new type of organic device for achieving high-resolution full-color displays. J Synt Met 91(1–3):9–13

    Article  Google Scholar 

  55. Stephen GG, Forrest R (1998) Design of flat-panel displays based on organic light-emitting devices. IEEE J Sel Topics Quantum Electron 4(1):83–99

    Article  Google Scholar 

  56. Jeong JK, Chung HJ, Mo YG, Kim HD (2008) Comprehensive study on the transport mechanism of amorphous indium-gallium-zinc oxide transistors. J Electrochem Soc 155(11):873–877

    Article  Google Scholar 

  57. Noh JK, Kang MS, Kim JS, Lee JH, Ham YH, Kim JB, Son S (2012) Inverted OLED. J Soc Info Disp 39(1):212–214

    Google Scholar 

  58. Wu C, Ho M, Su S, Chen CH (2012) Flexible inverted bottom-emitting organic light-emitting devices with a semi-transparent metal-assisted electron-injection layer. J Soc Inf Disp 18(1):76–80

    Article  Google Scholar 

  59. Springer R, Kang BY, Lampande R, Ahn DH, Lenk S, Reineke S, Kwon JH (2016) Cool white light-emitting three stack OLED structures for AMOLED display applications. Opt Express 24(24):28131–28142

    Article  Google Scholar 

  60. Chang CH, Chang T, Lo Y, Liang YH, Wu YJ, Chang HH (2015) Improving the efficiency of white OLEDs based on a gradient refractive index substrate. In: 22nd international conference on active-matrix flat panel display, devices, Kyoto, Japan, pp 73–76

    Google Scholar 

  61. Xu RP, Li YQ, Tang JX (2016) Recent advances in flexible organic light-emitting diodes. J Mater Chem C 4(39):9116–9142

    Article  Google Scholar 

  62. Lee SM, Kwon JH, Kwon S, Choi KC (2017) A review of flexible OLEDs toward highly durable unusual displays. IEEE Trans Electron Devices 64(5):1922–1931

    Article  Google Scholar 

  63. Yamamura T, Kitamura M, Kuribayashi K, Arakawa Y, Takeuchi S (2007) Flexible organic LEDs with parylene thin films for biological implants. In: 20th international conference on micro electro mechanical system, Hyogo, Japan, pp 739–742

    Google Scholar 

  64. Katsuki K, Kawakami A, Ogino K, Tanaka K, Usui H (2005) Preparation of carbazole polymer thin films by electron-assisted deposition of 3-(n-carbazolyl) propyl acrylate. Jpn J Appl Phys 44(6A):4182–4186

    Article  Google Scholar 

  65. Usui H (2009) Formation of polymer thin films and interface control by physical vapor deposition. Proc SPIE 7404:1–12

    Google Scholar 

  66. Tekin E, Smith PJ, Schubert US (2008) Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. J Soft Matter 4(4):703–713

    Article  Google Scholar 

  67. Salleh M, Hasnan T, Azis T, Sepeai S, Yahaya M (2007) Fabrication of organic light emitting diodes (OLEDs) for flat panel displays. BerkalaIlmiah MIPA 17(3):9–14

    Google Scholar 

  68. Hong K, Lee JL (2011) Review paper: recent developments in light extraction technologies of organic light emitting diodes. J Electron Mater Lett 7(2):77–91

    Article  Google Scholar 

  69. Lim TB, Cho KH, Kim YH, Jeong YC (2016) Enhanced light extraction efficiency of OLEDs with quasi periodic diffraction grating layer. Opt Express 24(16):50–59

    Google Scholar 

  70. Lamansky S, Djurovich P, Murphy D, Razzaq FA, Lee HE, Adachi C, Burrows PE, Forrest SR, Thompson ME (2001) Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes. J Am Chem Soc 123(18):4304–4312

    Article  Google Scholar 

  71. Adachi C, Baldo MA, Forrest SR, Thompson ME (2001) High efficiency red electrophosphorescence devices. Appl Phys Lett 78(11):1622–1624

    Article  Google Scholar 

  72. Tyan YS (2011) Organic light-emitting-diode lighting overview. J Photon Energy 1(1):1–15

    Article  Google Scholar 

  73. Brutting W, Frischeisen J, Schmidt TD, Scholz BJ, Mayr C (2013) Device efficiency of organic light-emitting diodes: progress by improved light outcoupling. J Phys Status Solid A 210(1)

    Article  Google Scholar 

  74. Mehta DS, Saxena K (2006) Light out-coupling strategies in organic light emitting devices. In: Proceedings of Asian symposium information display, New Delhi, India, pp 198–201

    Google Scholar 

  75. Lee ST, Gao ZQ, Hung LS (1999) Metal diffusion from electrodes in organic light-emitting diodes. J Appl Phys Lett 75(10):1404–1406

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank our Electronics and Communication Department, NITTTR, Chandigarh, for their valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Rana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rana, R., Jetly, A., Mehra, R. (2019). An Extensive Review on Organic Light-Emitting Diode for Energy-Saving and Eco-friendly Technology. In: Mishra, S., Sood, Y., Tomar, A. (eds) Applications of Computing, Automation and Wireless Systems in Electrical Engineering. Lecture Notes in Electrical Engineering, vol 553. Springer, Singapore. https://doi.org/10.1007/978-981-13-6772-4_78

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6772-4_78

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6771-7

  • Online ISBN: 978-981-13-6772-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics