Skip to main content

Microstructure and Mechanical Properties of 6005A-T5 Aluminum Alloy Welded Joints by Friction Stir Welding and Metal Inert Gas Welding

  • Conference paper
  • First Online:
Physics and Engineering of Metallic Materials (CMC 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 217))

Included in the following conference series:

  • 1440 Accesses

Abstract

The 6005A-T5 aluminum alloy welded joints were prepared by use of friction stir welding (FSW) and metal inert gas welding (MIG). The difference in microstructure and mechanical properties of the two types of welded joints were investigated by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscope (TEM), Vickers hardness, and tensile tests. The results showed that both two methods could be used to weld this alloy successfully. The nugget zone (NZ) of FSW joint experienced a mass of heat input, hence the fine equiaxed grains appeared and the β″ phases dissolved completely. The grown and elongated grains have been preserved in the thermo-mechanically affected zone (TMAZ). The grains in heat-affected zone (HAZ) grew significantly. The microstructure in weld metal of MIG joint shows an evident feature of dendrites. The fusion zone (FZ) is composed of large columnar crystals formed along the direction of heat dissipation. The upgrowth of grains in the HAZ region was more significant than that of FSW. Both the HAZ of the FSW and MIG joints consist of β′ phase and Q′ phase. The minimum hardness of FSW joints is located in the HAZ region, while that of MIG joints is located in the weld zone. The tensile strengths of the FSW and MIG joints reach 80.3 and 72.8% of the BM, respectively. Both of FSW and MIG joints show the ductile fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.C. Williams, E.A. Starke Jr., Progress in structural materials for aerospace systems. Acta Mater. 51(19), 5775 (2003)

    Article  CAS  Google Scholar 

  2. G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, The precipitation sequence in Al–Mg–Si alloys. Acta Mater. 46, 3893 (1998)

    Article  CAS  Google Scholar 

  3. S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, P.J. Uggowitzer, Mechanisms controlling the artificial aging of Al–Mg–Si alloys. Acta Mater. 59(9), 3352 (2011)

    Article  CAS  Google Scholar 

  4. P. Dong, D. Sun, H. Li, Natural aging behaviour of friction stir welded 6005A-T6 aluminium alloy. Mater. Sci. Eng., A 576(9), 29 (2013)

    Article  CAS  Google Scholar 

  5. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng., A 280(1), 37 (2000)

    Article  Google Scholar 

  6. Z. Yan, X. Liu, H. Fang, Mechanical properties of friction stir welding and metal inert gas welding of Al–Zn aluminum alloy joints. Int. J. Adv. Manuf. Technol. 91(9–12) (2017)

    Article  Google Scholar 

  7. C.L.M.D. Silva, A. Scotti, The influence of double pulse on porosity formation in aluminum GMAW. J. Mater. Process. Technol. 171(3), 366 (2006)

    Article  CAS  Google Scholar 

  8. G. Gou, M. Zhang, H. Chen et al., Effect of humidity on porosity, microstructure, and fatigue strength of A7N01S-T5 aluminum alloy welded joints in high-speed trains. Mater. Des. 85, 309 (2015)

    Article  CAS  Google Scholar 

  9. H. Liu, Y. Zhao, Y. Hu et al., Microstructural characteristics and mechanical properties of friction stir lap welding joint of Alclad 7B04-T74 aluminum alloy. Int. J. Adv. Manuf. Technol. 78(9–12), 1415 (2015)

    Article  Google Scholar 

  10. X. Wang, S. Mao, P. Chen et al., Evolution of microstructure and mechanical properties of a dissimilar aluminium alloy weldment. Mater. Des. 90, 230 (2016)

    Article  CAS  Google Scholar 

  11. L.P. Borrego, J.D. Costa, J.S. Jesus et al., Fatigue life improvement by friction stir processing of 5083 aluminium alloy MIG butt welds. Theor. Appl. Fract. Mech. 70, 68 (2014)

    Article  CAS  Google Scholar 

  12. W.M. Thomas, E.D. Nicholas, J.C. Needham et al., Friction welding. U.S. Patent 5,460,317, 24 Oct 1995

    Google Scholar 

  13. P. Dong, H. Li, D. Sun et al., Effects of welding speed on the microstructure and hardness in friction stir welding joints of 6005A-T6 aluminum alloy. Mater. Des. 45, 524 (2013)

    Article  CAS  Google Scholar 

  14. R.S. Mishra, Z.Y. Ma, Friction stir welding and processing. Mater. Sci. Eng., A 50(1), 1 (2005)

    Google Scholar 

  15. R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia, Recent advances in friction-stir welding—process, weldment structure and properties. Prog. Mater. Sci. 53(6), 980 (2008)

    Article  CAS  Google Scholar 

  16. A.R. Yazdipour, A. Shafiei, H.J. Aval, An investigation of the microstructures and properties of metal inert gas and friction stir welds in aluminum alloy 5083. Sadhana 36(4), 505 (2011)

    Article  CAS  Google Scholar 

  17. P. Moreira, M.A.V. De Figueiredo, P. De Castro, Fatigue behaviour of FSW and MIG weldments for two aluminium alloys. Theor. Appl. Fract. Mech. 48(2), 169 (2007)

    Article  CAS  Google Scholar 

  18. S. Maggiolino, C. Schmid, Corrosion resistance in FSW and in MIG welding techniques of AA6XXX. J. Mater. Process. Technol. 197(1–3), 237 (2008)

    Article  CAS  Google Scholar 

  19. T. Tagawa, K. Tahara, E. Abe et al., Fatigue properties of cast aluminium joints by FSW and MIG welding. Weld. Int. 28(1), 21 (2014)

    Article  Google Scholar 

  20. V. Crupi, A. Marinò, M. Biot et al., Fatigue prediction by thermographic method of aluminum alloy 6082 panels: comparison between FSW and MIG welding. J. Ship Prod. Des. 23(4), 215 (2007)

    Google Scholar 

  21. C. Sharma, D.K. Dwivedi, P. Kumar, Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of AA7039 aluminum alloy. Mater. Des. 36(1), 379 (2012)

    Article  CAS  Google Scholar 

  22. Z. Zhang, B.L. Xiao, Z.Y. Ma, Effect of segregation of secondary phase particles and “S” line on tensile fracture behavior of friction stir-welded 2024Al-T351 joints. Metall. Mater. Trans. A 44(9), 4081 (2013)

    Article  CAS  Google Scholar 

  23. Y.S. Sato, H. Takauchi, S.H.C. Park et al., Characteristics of the kissing-bond in friction stir welded Al alloy 1050. Mater. Sci. Eng., A 405(1), 333 (2005)

    Article  CAS  Google Scholar 

  24. S. Di, X. Yang, D. Fang et al., The influence of zigzag-curve defect on the fatigue properties of friction stir welds in 7075-T6 Al alloy. Mater. Chem. Phys. 104(2), 244 (2007)

    Article  CAS  Google Scholar 

  25. S.J. Andersen, H.W. Zandbergen, J. Jansen et al., The crystal structure of the β″ phase in Al–Mg–Si alloys. Acta Mater. 46(2), 3283 (2007)

    Google Scholar 

  26. W. Yang, M. Wang, Y. Jia et al., Studies of orientations of β″ precipitates in Al–Mg–Si–(Cu) alloys by electron diffraction and transition matrix analysis. Metall. Mater. Trans. A 42(9), 2917 (2011)

    Article  CAS  Google Scholar 

  27. R. Vissers, M.A.V. Huis, J. Jansen et al., The crystal structure of the β′ phase in Al–Mg–Si alloys. Acta Mater. 55(11), 3815 (2007)

    Article  CAS  Google Scholar 

  28. M. Torsæter, W. Lefebvre, C.D. Marioara et al., Study of intergrown L and Q′ precipitates in Al–Mg–Si–Cu alloys. Scripta Mater. 64(9), 817 (2011)

    Article  CAS  Google Scholar 

  29. R.K.W. Marceau, A. de Vaucorbeil, G. Sha, S.P. Ringer, W.J. Poole, Analysis of strengthening in AA6111 during the early stages of aging: atom probe tomography and yield stress modelling. Acta Mater. 61(19), 7285 (2013)

    Article  CAS  Google Scholar 

  30. M.J. Starink, L.F. Cao, P.A. Rometsch, A model for the thermodynamics of and strengthening due to co-clusters in Al–Mg–Si-based alloys. Acta Mater. 60(10), 4194 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Key R&D Program of China (2016YFB0300905, 2016YFB0300902) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J. et al. (2019). Microstructure and Mechanical Properties of 6005A-T5 Aluminum Alloy Welded Joints by Friction Stir Welding and Metal Inert Gas Welding. In: Han, Y. (eds) Physics and Engineering of Metallic Materials. CMC 2018. Springer Proceedings in Physics, vol 217. Springer, Singapore. https://doi.org/10.1007/978-981-13-5944-6_56

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5944-6_56

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5943-9

  • Online ISBN: 978-981-13-5944-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics