Skip to main content

Salt-tolerant Microbes in Mangroves: Ecological Role and Bioprospecting Potential

  • Chapter
  • First Online:
Research Developments in Saline Agriculture

Abstract

Mangroves support salt-tolerant microbial communities such as microalgae, fungi, actinomycetes, bacteria as well as viruses. The microbes form the basis of the functioning of the mangrove habitats. The mangrove system is a detritus-based one that depends on the microorganisms that play a vital role in decomposing the organic matter, making the protein-rich food for fishes, recycling the nutrients and in supporting the coastal food web. In order to adapt to varied conditions of mangroves, the microbes produce novel chemical compounds of unique biological properties. However, the bioprospecting potential of the mangrove-derived microbes is yet to be properly understood for their potential applications as food, fuel, fertilizers and valuable chemicals for pharmaceutical and industrial utility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alongi DM (2002) Present state and future of the world’s mangrove forests. Environ Cons 29(3):331–349

    Article  Google Scholar 

  • Anburaj R (2011) Studies on marine cyanobacteria (chroococcales) isolated from mangrove biotope for their possible utility. Ph.D. Thesis, Annamalai University, India, 240 pp

    Google Scholar 

  • Anburaj R, Saravanakumar K, Gomathi V, Yuvaraj J, Kathiresan K (2011) Calcium removal from aqueous solution by marine cyanobacterium, Gloeocapsa species: adsorption kinetics and equilibrium studies. Int J Pharm Appl 2(3):195–201

    Google Scholar 

  • Asmathunisha N, Kathiresan K (2013) A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf B Biointerfaces 103:283–287

    Article  CAS  PubMed  Google Scholar 

  • Asmathunisha N, Kathiresan K, Anburaj R, Nabeel MA (2010) Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf B Biointerfaces 79:488–493

    Google Scholar 

  • Aunstrup K, Anderson O, Falch EA, Nielsen TK (1979) Production of microbial enzymes. In: Peppler HJ, Perlma D (eds) Microbial technology, vol 1, 2nd edn. Academic Press, Inc., New York, pp 281–309

    Google Scholar 

  • Badhul Haq MA, Kathiresan K (2015) Marine viral diversity. In: Kathiresan K, Khan SA (eds) International training course on ‘Mangrove Biodiversity and Ecosystems’ – course manual. Annamalai University, Centre of Advanced Study in Marine Biology, Parangipettai, pp 276–289

    Google Scholar 

  • Balagurunathan R (1992) Antagonistic actinomycetes from Indian shallow sea sediments with reference to α,β – unsaturated γ – lactone type of antibiotic from Streptomyces griseobrunneus. Ph.D. thesis, Annamalai University, Parangipettai, India, 88pp

    Google Scholar 

  • Barghoorn ES, Linder DH (1944) Marine fungi: their taxonomy and biology. Farlowia 1:395–467

    Google Scholar 

  • Baz JP, Canedo LM, Puentes JLF, Silva Elipe MV (1997) Thiocoraline, a novel depsipeptide with antitumor activity produced by a marine Micromonospora II: Physico-chemical properties and structure determination. J Antibiot 50:738–741

    Article  Google Scholar 

  • Bhattacharyya A, Haldar A, Bhattacharyya M, Ghosh A (2018) Anthropogenic influence shapes the distribution of antibiotic resistant bacteria (ARB) in the sediment of Sundarban estuary in India. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2018.08.038

    Article  CAS  PubMed  Google Scholar 

  • Cardillina JH, Marner FJ, Moore RE (1979) Seaweed dermatitis: structure of Iyngbyatoxin A. Science 204:193–195

    Article  Google Scholar 

  • Chale FMM (1993) Degradation of mangrove leaf litter under aerobic conditions. Hydrobiologia 257:177–183

    Article  CAS  Google Scholar 

  • Cohen P, Holmes C, Tsukitani Y (1990) Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci 15:98–102

    Article  CAS  PubMed  Google Scholar 

  • Gerwick WH, Proteau PJ, Nagle DG, Hamel E, Blokhin A, Slate DL (1994) Structure of curacin A, a novel antimitotic, antiproliferative and brine shrimp toxic natural product from the marine cyanobacterium Lyngbya majuscula. J Org Chem 59:243–1245

    Article  Google Scholar 

  • Godfrey T, Reichet P (1985) Industrial enzymology: the applications of enzymes of industry. The Nature Press, London

    Google Scholar 

  • Gomathi V (2009) Studies on Thraustochytrids sp., for PUFA production and nanoparticles synthesis. M. Phil Thesis, CAS in Marine Biology, Annamalai University, India, 60pp

    Google Scholar 

  • Gomathi V (2011) Studies on marine thraustochytrids isolated from mangrove biotope for their possible utility. Ph.D. Thesis, CAS in Marine Biology, Annamalai University, India, 240pp

    Google Scholar 

  • Gomathi V, Saravanakumar K, Kathiresan K (2012) Biosorption of chromium by mangrove-derived Aplanochytrium sp. Afr J Biotechnol 11(95):16177–16186

    Article  CAS  Google Scholar 

  • Gomathi V, Saravanakumar K, Kathiresan K (2013) Production of polyunsaturated fatty acid (DHA) by mangrove-derived Aplanochytrium sp. Afr J Microbiol Res 7(13):1098–1103

    CAS  Google Scholar 

  • Gomes NCM, Cleary DFR, Calado R, Costa R (2011) Mangrove bacterial richness. Commun Integr Biol 4(4):419–423

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta N, Das S, Basak U (2007) Useful extracellular activity of bacteria isolated from Bhitarkanika mangrove ecosystem of Orissa coast. Malaysian J Microbiol 3(2):15–18

    Google Scholar 

  • Imchen M, Kumavath R, Barh D, Azevedo V, Ghosh P, Viana M, Wattam AR (2018a) Searching for signatures across microbial communities: metagenomic analysis of soil samples from mangrove and other ecosystems. Sci Rep 8(1):165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Imchen M, Kumavath R, Barh D, Vaz A, Góes-Neto A, Tiwari S, Azevedo V (2018b) Comparative mangrove metagenome reveals global prevalence of heavy metals and antibiotic resistome across different ecosystems. Sci Rep 8(1):11187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kala RR, Chandrika V (1993) Effect of different media for isolation, growth and maintenance of Actinomycetes from mangrove sediments. Indian J Mar Sci 22:297–299

    Google Scholar 

  • Kang SW, Park YS, Lee JS, Hong SI, Kim SW (2004) Production of cellulases and hemicellulases by A. niger KK2 from lignocellulosic biomass. Bioresour Technol 91:153–156

    Article  CAS  PubMed  Google Scholar 

  • Kathiresan K (2000a) Mangrove Atlas and Status of species in India. Report submitted to Ministry of Environment and Forest, Govt. of India, New Delhi, 235pp

    Google Scholar 

  • Kathiresan K (2000b) A review of studies on Pichavaram mangrove, southeast India. Hydrobiologia 430:185–205

    Article  Google Scholar 

  • Kathiresan K (2003) Polythene and plastics – degrading microbes from the mangrove soil. Rev Biol Trop 51(3):629–634

    CAS  PubMed  Google Scholar 

  • Kathiresan K (2009) Mangroves and coral reefs of India. Compilation of salient findings of research projects supported by Ministry of environment and Forests (Govt. of India) during 10th Five Year Plan Period, pp 255

    Google Scholar 

  • Kathiresan K (2015) Ocean and coastal ecology. Scientific Publishers, Jodhpur, 384 pp. (ISBN: 978–81–7233-891-6)

    Google Scholar 

  • Kathiresan K (2018) Mangrove forests of India. Curr Sci 114(5):976–981

    Article  Google Scholar 

  • Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. Adv Mar Biol 40:81–251

    Article  Google Scholar 

  • Kathiresan K, Duraisamy A (2006) Current issues of marine microbiology. ENVIS Centre Newslett 4:3–5

    Google Scholar 

  • Kathiresan K, Manivannan S (2006a) α-Amylase production by Penicillium fellutanum isolated from mangrove rhizosphere soil. African J Biotechnol 5:829–832

    CAS  Google Scholar 

  • Kathiresan K, Manivannan S (2006b) Glucose isomerase production by Penicillium fellutanum isolated from mangrove sediment. Trends Appl Sci Res 1:524–428

    Article  CAS  Google Scholar 

  • Kathiresan K, Manivannan S (2006c) Cellulase production by Penicillium fellutanum isolated from coastal mangrove rhizosphere soil. Res J Microbiol 1:438–442

    Article  CAS  Google Scholar 

  • Kathiresan K, Manivannan S (2007) Production of Alkaline protease by Streptomyces sp., isolated from coastal mangrove sediment. Res J Environ Sci 1(4):173–178

    Article  CAS  Google Scholar 

  • Kathiresan K, Masilamani Selvam M (2006) Evaluation of beneficial bacteria from mangrove soil. Bot Mar 49:86–88

    Article  CAS  Google Scholar 

  • Kathiresan K, Qasim SZ (2005) Biodiversity of mangrove ecosystems. Hindustan Publishing Corporation, New Delhi, 251pp

    Google Scholar 

  • Kathiresan K, Saravanakumar K (2011) Bio-ethanol production by marine yeasts isolated from coastal mangrove sediment. Int Multidiscip Res J 1(1):19–24

    CAS  Google Scholar 

  • Kathiresan K, Srinivasan K (2006) Making artificial honey using yeast cells from salivary glands of honey bees. Indian J Exp Biol 43:664–666

    Google Scholar 

  • Kathiresan K, Balagurunathan R, Masilamaniselvam M (2005) Fungicidal activity of marine actinomycetes against phytopathogenic fungi. Indian J Biotechnol 4:271–276

    Google Scholar 

  • Kathiresan K, Nabeel MA, Manivannan S (2008) Bioprospecting of marine organisms for novel bioactive compounds. J Sci Trans Environ Technov 1:107–120

    Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B: Biointerfaces 71:133–137

    Article  CAS  PubMed  Google Scholar 

  • Kathiresan K, Nabeel MA, Sri Mahibala B, Asmathunisha N, Saravanakumar K (2010) Analysis of antimicrobial silver nanoparticles synthesized by coastal strains of Escherichia coli and Aspergillus niger. Can J Microbiol 56:1050–1059

    Article  CAS  PubMed  Google Scholar 

  • Kathiresan K, Nabeel MA, Gayathridevi M, Asmathunisha N, Gopalakrishnan A (2012) Synthesis of silver nanoparticles by coastal plant Prosopis chilensis (L.) and their efficacy in controlling vibriosis in shrimp Penaeus monodon. Appl Nanosci. https://doi.org/10.1007/s13204-012-0064-1

    Article  CAS  Google Scholar 

  • Koehn FE, Longley RE, Reed JK (1992) Microcolin A and B, new immunosuppressive peptides from the blue green alga Lyngbya majuscule. J Nat Prod 55:613–619

    Article  CAS  PubMed  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology. Academic Press, New York, 690pp

    Chapter  Google Scholar 

  • Lakshmanaperumalsamy P (1978) Studies on actinomycetes with special reference to antagonistic Streptomycetes from sediments of Porto Novo coastal zone. Ph.D. thesis, Annamalai University, Parangipettai, India, 192pp

    Google Scholar 

  • Lin LL, Hsu WH, Chu WS (1997) A gene encoding for α-amylase from thermophilic Bacillus sp., strain TS-23 and its expression in Escherichia coli. J Appl Microbiol 82:325–334

    Article  CAS  PubMed  Google Scholar 

  • Manivannan S (2008) Studies on marine yeasts isolated from mangrove habitat for their potential applications. Ph.D., Thesis submitted to Annamalai University. pp 217

    Google Scholar 

  • Manivannan S, Kathiresan K (2007a) Effect of medium composition on Glucose Oxidase production by Penicillium fellutanum isolated from mangrove rhizosphere soil. Res J Microbiol 2:294–298

    Article  CAS  Google Scholar 

  • Manivannan S, Kathiresan K (2007b) Alkaline protease production by Penicillium fellutanum isolated from mangrove sediment. Int J Biol Chem 1:98–103

    Article  CAS  Google Scholar 

  • Manivannan S, Kathiresan K (2009). Marine yeasts from rhizosphere soil of mangroves along the east coast of India. Conservation and Management of Mangroves in India, Zoological Survey of India, pp 269–274

    Google Scholar 

  • Mann FD, Steinke TD (1992) Biological nitrogen-fixation (acetylene reduction) associated with decomposing Avicennia marina leaves in the Beach-wood mangrove nature reserve. S Afr J Bot 58:533–536

    Article  CAS  Google Scholar 

  • Maskey RP, Sevivana MM, Us’on I, Helmke E, Laatsch H (2002) Gutingimycin: a highly complex metabolite from a marine streptomycete. J Antibiot 55:1031

    Article  CAS  PubMed  Google Scholar 

  • Meyer PS (2000) Developments in aquatic microbiology. Int Microbiol 3:203–211

    Google Scholar 

  • Mohanan C (2008) Biodiversity of fungi in mangrove ecosystem in the West Coast region, Kerala, India. Ibid. Abstracts, p 14

    Google Scholar 

  • Nabeel MA, Manivannan S, Kathiresan K (2009) Marine cyanobacteria from rhizosphere soil of mangroves along the east coast of India. Conservation and Management of Mangroves in India, Zoological Survey of India, pp 253–360

    Google Scholar 

  • Nabeel MA, Kathiresan K, Rajendran N, Ohnishi H, Hamaoka H, Omori K (2010) Contribution by microbes to the food web of a mangrove biotope: the approach of carbon and nitrogen stable isotopes. Afr J Mar Sci 32(1):65–70

    Article  Google Scholar 

  • Palaniselvam V, Kathiresan K (2002) Ephiphytic cyanobacteria from mangroves. In: Anand N (ed) Algological research in India. Bishen Singh Mahendra Pal Singh, Dehra Dun, pp 45–54

    Google Scholar 

  • Proteau PJ, Gerwick WH, Garcia-Pichel F, Castenholz RW (1993) The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49:825–829

    Article  CAS  PubMed  Google Scholar 

  • Rajendran N (1997) Studies on mangrove-associated prawn seed resources of the Pichavaram, southeast coast of India. Ph.D. thesis, Annamalai University, Parangipettai, India, 135pp

    Google Scholar 

  • Rajendran N, Kathiresan K (1999a) Seasonal occurrence of juvenile prawn and environmental factors in a Rhizophora mangal, southeast coast of India. Hydrobiologia 394:193–200

    Article  CAS  Google Scholar 

  • Rajendran N, Kathiresan K (1999b) Do decomposing leaves of mangrove attract fishes? Curr Sci 77:972–976

    Google Scholar 

  • Rajendran N, Kathiresan K (2004) How to increase juvenile shrimp in mangrove water? Wetl Ecol Manag 12:179–188

    Article  Google Scholar 

  • Rajendran N, Kathiresan K (2007) Microbial flora associated with submerged mangrove leaf litter in India. Rev Biol Trop 55:393–400

    PubMed  Google Scholar 

  • Ravi AV, Musthafa KS, Jegathammbal G, Kathiresan K, Pandian SK (2007) Screening and evaluation of probiotics as a biocontrol agent against pathogenic Vibrios in marine aquaculture. Lett Appl Microbiol 45(2):219–223

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar S, Kathiresan S, Ignatiammal STM, Selva MB, Shanthy S (2004) Nitrogen-fixing azotobacters from mangrove habitat and their utility as marine biofertilizers. J Exp Mar Biol Ecol 312:5–17

    Article  CAS  Google Scholar 

  • Ravikumar S, Kathiresan K, Alikhan SL, Williams GP, Gracelin NA (2007) Growth of Avicennia marina and Ceriops decandra seedlings inoculated with halophilic azotobacters. J Environ Biol 28(3):601–603

    CAS  PubMed  Google Scholar 

  • Richter G (1983) Glucose oxidase. In: Godfrey T, Reichelt JR (eds) Industrial enzymology: the application of enzymes in industry. The Nature, New York, pp 428–436

    Google Scholar 

  • Robertson AI, Blaber SJM (1992) Plankton, epibenthos and fish communities. In: Robertson AI, Alongi DM (eds) Coastal and estuarine studies: tropical mangrove ecosystem. American Geophysical Union, Washington, DC, pp 173–224

    Chapter  Google Scholar 

  • Sahoo K, Dhal NK (2009) Potential microbial diversity in mangrove ecosystem: a review. Indian J Mar Sci 38(2):249–256

    CAS  Google Scholar 

  • Saravanakumar K (2012) Studies on mangroves derived fungi (Trichoderma sp.) and their biotechnological applications. Ph.D. thesis, Annamalai University, India, 285 pp

    Google Scholar 

  • Saravanakumar K, Kathiresan K (2012) Statistical optimization of protease production by mangrove-derived Trichoderma estonicum and its potential on blood stain removal. Int J Biotechnol Mol Biol 3(2):15–21

    Google Scholar 

  • Saravanakumar K, Kathiresan K (2014) Bioconversion of lignocellulosic waste to bioethanol by Trichoderma and yeast fermentation. 3 Biotech 4(5):493–499

    Article  CAS  PubMed  Google Scholar 

  • Saravanakumar K, Shanmuga Arasu V, Kathiresan K (2013) Effect of Trichoderma species on Avicennia marina. Aquat Bot 104:101–105

    Article  CAS  Google Scholar 

  • Selvam M, Kathiresan K (2010) Beneficial bacteria from soil of a tropical mangroves. Asian J Microbiol Biotechnol Environ Sci 12(1):1–2

    Google Scholar 

  • Senthilraja P, Kathiresan K (2011) Computational selection of compounds derived from mangrove ecosystem for anti-cervical cancer activity. J Recent Sci Res 2(4):93–98

    Google Scholar 

  • Sivakumar K (2001) Actinomycetes of an Indian mangrove (Pichavaram) environment: an inventory. Ph.D. thesis, Annamalai University, Parangipettai, India, 91pp

    Google Scholar 

  • Steinke TD, Barnabas AD, Somaru R (1990) Structural changes and associated microbial activity accompanying decomposition of mangrove leaves in Mgeni estuary. S Afr J Bot 56:39–48

    Article  Google Scholar 

  • Thatoi, H, Chandra Behera B, Ranjan Mishra R, Dutta SK (2013). Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. Ann Microbiol 63(1):1–19

    Article  CAS  Google Scholar 

  • Thiruneelankandan G (2008) Studies on marine lactobacilli from mangrove soil for their utility in fish preservation. Ph.D., thesis submitted to Annamalai University, pp 143

    Google Scholar 

  • Thiruneelankandan G, Manivannan S, Kathiresan K (2009) Marine lactobacilli from rhizosphere soil of mangroves along the east coast of India. Conservation and Management of Mangroves in India, Zoological Survey of India, pp 261–267

    Google Scholar 

  • Wafar S, Untawale AG, Wafar MVM (1997) Litter fall and energy flux in a mangrove ecosystem. Estuar Coast Shelf Sci 44:111–124

    Article  Google Scholar 

  • Zhuang T, Lin P (1993) Soil microbial amount variations of mangroves (Kandelia candel) in process of natural decomposition of litter leaves. J Xiamen Univ Nat Sci 32:365–370

    Google Scholar 

Download references

Acknowledgments

The author is thankful to UGC for BSR Faculty Fellowship and authorities of Annamalai University for providing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kathiresan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kathiresan, K. (2019). Salt-tolerant Microbes in Mangroves: Ecological Role and Bioprospecting Potential. In: Dagar, J., Yadav, R., Sharma, P. (eds) Research Developments in Saline Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-13-5832-6_7

Download citation

Publish with us

Policies and ethics