Skip to main content

Economic Utilization and Potential of Halophytes

  • Chapter
  • First Online:
Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes

Abstract

Agricultural land is continuously becoming less available for cultivation due to increasing population and unfavourable environmental conditions including climate changes. Salinity, worldwide, is one of the biggest problems for agriculture leading to significant yield losses especially in dry lands. The best solution for proper use of these lands would be by using salt-tolerant crops or crops with phytoremediation properties. Since the phytoremediation potential of salt-tolerant crops is negligible, thus, cultivation of halophytes serves as replacement for crop plants to desalinize the saline or alkaline areas. Halophytes constitute most of natural flora of the saline soils, with maximum survival and productivity. Therefore, there is an urgent need to explore halophytes, which will give an insight into the mechanisms adopted by halophytes for survival and productivity on saline areas. Also, saline agriculture can be made feasible by exploring halophytic growth attributes. In addition, halophytes can serve as alternate crops in waste lands while making them suitable for traditional crops over a period of time. Thus, the importance of halophytes in growing over saline areas not only brings out ecological recovery of saline soils but also produces huge biomass as a biofuel for renewable energy source and ultimately leading of CO2 sequestration. Hence, the phytoremediation property of halophytes can be tremendously cashed in a more economic way with minimum inputs. In coastal areas, mangroves support the living system w.r.t. agriculture, aquaculture and wild life and also stabilize the coastal saline lands. Mangroves are also providing commercial products in form of wood with multi-uses in coastal areas. In the present review, a brief compilation of the potential and special adaptive biology of halophytic plants under salinity stress is done with the remediation mechanism of these hyperaccumulators plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 05 July 2019

    This book was inadvertently published with an incorrect affiliation of Dr. Pooja in chapters 2, 5 and 9.

References

  • Abdal MS (2009) Salicornia production in Kuwait. World Appl Sci J 6:1033–1038

    Google Scholar 

  • Abideen Z, Ansari R, Gul B, Khan MA (2012) The place of halophytes in Pakistan’s biofuel industry. Biofuels 3:211–220

    Article  CAS  Google Scholar 

  • Adolf VI, Jacobsen SE, Shabala S (2013) Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ Exp Bot 92:43–54

    Article  CAS  Google Scholar 

  • Agarie S, Kawaguchi A, Kodera A, Sunagawa H, Kojima H, Nose A, Nakahara T (2009) Potential of the common ice plant, Mesembryanthemum crystallinum as a new high-functional food as evaluated by polyol accumulation. Plant Prod Sci 12:37–46

    Article  Google Scholar 

  • Amtamann A, Bohneri HJ, Bressan RA (2005) Abiotic stress and plant genome evolution-search for new models. Plant Physiol 138:127–130

    Article  CAS  Google Scholar 

  • Aronson JA (1989) HALOPH: a database of salt tolerant plants of the worlds. Arid land studies, University of Arizona, Tucson

    Google Scholar 

  • Ashraf MY, Ashraf M, Mahmood K, Akhter J, Hussain F, Arshad M (2010) Phytoremediation of saline soils for sustainable agricultural productivity. In: Ashraf M, Öztürk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, Berlin, pp 335–3355

    Chapter  Google Scholar 

  • Boyko H (1966) Basic ecological principles of plant growing by irrigation with highly saline or seawater. In: Boyko H (ed) Salinity and aridity. Junk Publishers, The Hague

    Chapter  Google Scholar 

  • Bressan RA, Zhang C, Zhang H, Hasegawa PM, Bohnert HJ, Zhu JK (2001) Learning from the Arabidopsis experience : the next gene search faradism. Plant Physiol 127:1354–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JJ, Glenn EP, Smith SE (2014) Feasibility of halophyte domestication for high-salinity agriculture. In: Khan MA et al (eds) Sabkha ecosystems: volume IV: cash crop halophyte and biodiversity conservation, Tasks for Vegetation Science 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7411-7_5

    Chapter  Google Scholar 

  • Buhmann A, Papenbrock J (2013) Biofiltering of aquaculture effluents by halophytic plants: basic principles, current uses and future perspectives. Environ Exp Bot 92:122–133

    Article  Google Scholar 

  • Cambrolle J, Redondo-Gomez S, Mateos-Naranjo E, Figueroa ME (2008) Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Mar Pollut Bull 56:2037–2042

    Article  CAS  PubMed  Google Scholar 

  • Cassaniti C, Romano D, Hop MECM, Flowers TJ (2013) Growing floricultural crops with brackish water. Environ Exp Bot 92:165–175

    Article  CAS  Google Scholar 

  • Chanda S, Rakholiya K, Nair R (2011) Antimicrobial activity of Terminalia catappa L. leaf extracts against some clinically important pathogenic microbial strains. Chin Med 2:171–177

    Article  Google Scholar 

  • Chaudhri II, Shah BH, Naqvi N, Mallick IA (1964) Investigations on the role of Suaeda fruticosa Forsk in the reclamation of saline and alkaline soils in West Pakistan plains. Plant Soil 21:1–7

    Article  Google Scholar 

  • Choukr-Allah R, Malcolm CV, Hamdy A (1996) Halophytes and biosaline agriculture. Marcel Dekker, New York

    Google Scholar 

  • Chushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Soil 3:117–124

    Article  Google Scholar 

  • Cuin TA, Tian Y, Betts SA, Chalmandrier R, Shabala S (2009) Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. Funct Plant Biol 36:1110–1119

    Article  CAS  Google Scholar 

  • da Silva EC, Nogueira RJMC, de Aráujo FP, De Melo NF, de Azevedo Neto AD (2008) Physiological responses to salt stress in young umbel plants. Environ Exp Bot 63:147–157

    Article  CAS  Google Scholar 

  • Dagar JC (2005) Ecology, management and utilization of halophytes. Bull Natl Inst Ecol 15:81–97

    Google Scholar 

  • Dansereau P (1957) Biogeography: an ecological perspective. Ronald Press, New York

    Google Scholar 

  • Datta KS, Angrish R (2006) Selection, characterization and quantification of plant species for phytoremediation of saline soils. In: Final progress report, Ministry of Environment and Forests, Government of India, New Delhi, India, pp 1–166

    Google Scholar 

  • de Vos AC, Broekman R, Guerra CCD, van Rijsselberghe M, Rozema J (2013) Developing and testing new halophyte crops: a case study of salt tolerance of two species of the Brassicaceae, Diplotaxis tenuifolia and Cochlearia officinalis. Environ Exp Bot 92:154–164

    Article  CAS  Google Scholar 

  • Del Campo I, Alegría I, Zazpe M, Echeverría M, Echeverría I (2006) Diluted acid hydrolysis pretreatment of agri-food wastes for bioethanol production. Ind Crop Prod 24:214–221

    Article  CAS  Google Scholar 

  • Demirbas MF, Balat M, Balat H (2011) Biowastes-to-biofuels. Energ Conserv Manag 52:1815–1828

    Article  CAS  Google Scholar 

  • Devi S, Rani C, Datta KS, Bishnoi SK, Mahala SC, Angrish R (2008) Phytoremediation of soil salinity using salt hyperaccumulator plants. Indian J Plant Physiol 4:347–356

    Google Scholar 

  • Devi S, Nandwal AS, Angrish R, Arya SS, Kumar N, Sharma SK (2016) Phytoremediation potential of some halophytic species for soil salinity. Int J Phytoremediat 18:693–696

    Article  CAS  Google Scholar 

  • Eshel A, Zilberstein A, Alekparov C, Eilam T, Oren I, Sasson Y, Valentini R, Waisel Y (2010) Biomass production by desert halophytes: alleviating the pressure on food production. In: Rosen MA, Perryman R, Dodds S, Mizi F, Yuji W, Polkowsaka Z, Sobik M (eds) Recent advances in energy & environment: proceedings of the 5th IASME/WSEAS international conference on energy & environment (EE’10). WSEAS Press, Stevens Point, pp 362–367

    Google Scholar 

  • FAO (2012) FAO statistical year book 2012, World Food and Agriculture. Food and Agriculture Organization of the United Nation, Rome, p 366

    Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121

    Article  CAS  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plant. Funct Plant Biol 37:604–612

    Article  Google Scholar 

  • Ghnaya T, Nouairi I, Slama I, Messedi D, Grignon C, Adbelly C, Ghorbel MH (2005) Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. J Plant Physiol 162:1133–1140

    Article  CAS  PubMed  Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Gómez MB, Castro PA, Mignone C, Bertero HD (2011) Can yield potential be increased by manipulation of reproductive partitioning in quinoa (Chenopodium quinoa)? Evidence from gibberellic acid synthesis inhibition using Paclobutrazol. Funct Plant Biol 38:420–430

    Article  CAS  Google Scholar 

  • Grattan SR, Benes SE, Peters DW, Diaz F (2008) Feasibility of irrigating pickleweed (Salicornia bigelovii. Torr) with hyper-saline drainage water. J Environ Qual 37:S149–S156

    Article  CAS  PubMed  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non halophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Hajibagheri MA, Hall JL, Flowers TJ (1984) Stereological analysis of leaf cells of the halophyte Suaeda maritime (L.). J Exp Bot 35:1547–1557

    Article  Google Scholar 

  • Hamada A, Shono M, Xia T, Ohta M, Hayashi Y, Tanaka A, Hayakawa T (2001) Isolation and characterization of Na+/H antiporter gene from the halophyte Atriplex gemelini. Mol Biol 46:35–42

    Article  CAS  Google Scholar 

  • Hamidov A, Beltrao J, Neves A, Khaydarova V, Khamidov M (2007) Apocynum lancifolium and Chenopodium album—potential species to remediate saline soils. WSEAS Trans Environ Dev 3:123–128

    CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Teixeira da Silva JA, Fujita M (2012) Plant responses and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies. Springer, Berlin, pp 261–316

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Mahabub Md, Prasanta A, Bhowmik CC, Amzad Hossain C, Rahman MM, Prasad MNV, Öztürk M, Fujita M (2014) Potential use of halophytes to remediate saline soils. Hindawi Publishing Corporation. BioMed Res Int. https://doi.org/10.1155/2014/589341

    Google Scholar 

  • Himabindu Y, Chakradhar T, Reddy MC, Kanygin A, Redding K, Chandrashekar T (2016) Salt – tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environ Expt Bot 124:39–63

    Article  CAS  Google Scholar 

  • Ho MW, Cummins J (2009) Saline agriculture to feed and fuel the world institute for science in society, ISIS Report 24/02/09. The Institute of Science in Society, London, p 2009

    Google Scholar 

  • Hoffman GJ, Shannon MC, Mass EV, Grass L (1988) Rubber production of salt stressed guayele at various plant populations. Irrig Sci 9:213–226

    Article  Google Scholar 

  • Horie T, Schroeder JI (2004) Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiol 136:2457–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MA (2010) Global warming induced sea level rise on soil, land and crop production loss in Bangladesh. 19th world congress of soil science, soil solutions for a changing world, Brisbane

    Google Scholar 

  • ICBA (2007) Annual report 2006 (1426-27H). International Centre for Biosaline Agriculture, Dubai

    Google Scholar 

  • Jacobsen SE, Christiansen JL, Rasmussen J (2010) Weed harrowing and inter row hoeing in organic grown quinoa (Chenopodium quinoa Willd.). Outlook Agric 39:223–227

    Article  Google Scholar 

  • James LEA (2009) Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Adv Food Nutr Res 58:1–31

    Article  CAS  Google Scholar 

  • Jaradat AA (2003) Halophytes for sustainable biosaline farming systems in the Middle East. In: Alsharhan AS, Fowler A, Goudie AS, Abdellatif EM, Wood WW (eds) Desertification in the third millennium. Taylor and Francis, Rotterdam, pp 187–203

    Chapter  Google Scholar 

  • Jaradat AA (2005) Saline agriculture in the Arabian Peninsula: management of marginal lands and saline water resources. J Food Agric Environ 2:302–306

    Google Scholar 

  • Ke-Fu Z (1991) Desalinization of saline soils by Suaeda salsa. Plant Soil 135:303–305

    Article  Google Scholar 

  • Koca H, Bor M, Ozdemir F, Turkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    Article  CAS  Google Scholar 

  • Koyro HW, Eisa SS (2008) Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Plant Soil 302:79–90

    Article  CAS  Google Scholar 

  • Koyro HW, Khan MA, Lieth H (2011) Halophytic crops: a resource for the future to reduce the water crisis? Emir J Food Agric 23:1–16

    Article  Google Scholar 

  • Kumar S, Kumar A, Kumar P, Kumar R, Lata C, Yadav T (2016) Fodder qualities of halophytes under saline and sodic environments conference: innovative approaches for animal feeding and nutritional research at: Karnal, India volume: book of abstracts of XVI Biennial animal nutrition conference

    Google Scholar 

  • Ladeiro B (2012) Saline agriculture in the 21st century: using salt contaminated resources to cope food requirements. J Bot 2012:1. https://doi.org/10.1155/2012/310705

    Article  CAS  Google Scholar 

  • Leith H, Lohmann M, Guth M, Menzel U (2000) Cash crop halophytes for future halophytes growers. Institute of Environmental System Research, University of Osnabreuck, Germany, p 32

    Google Scholar 

  • Lewis MA, Devereux R (2009) Non-nutrient anthropogenic chemicals in sea grass ecosystems: fate and effects. Environ Toxicol Chem 28:644–661

    Article  CAS  PubMed  Google Scholar 

  • Lokhande VH, Suprasanna P (2012) Prospects of halophytes in understanding and managing abiotic stress tolerance. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 29–56

    Chapter  Google Scholar 

  • Lu D, Zhang M, Wang S, Cai J, Zhou X, Zhu C (2010) Nutritional characterization and changes in quality of Salicornia bigelovii Torr. during storage. LWT – Food Sci Technol 43:519–524

    Article  CAS  Google Scholar 

  • Lv S, Jiang P, Chen X, Fan P, Wang X, Li Y (2012) Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europea. Plant Physiol Biochem 51:47–52

    Article  CAS  PubMed  Google Scholar 

  • Maas EV (1990) Crop salt tolerance. In: Tanji KK (ed) Agricultural salinity assessment and management, ASCE Manuals and Reports on Engineering Pratice No. 71. American Society of Civil Engineers, New York, pp 262–304

    Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Mandloi S, Mishra R, Verma R, Mugal S, Rajshree S (2013) Phytochemical analysis of the leaf extract of Terminalia catappa L. Indian J App Pure Biol 28:65–70

    Google Scholar 

  • Manousaki E, Kalogerakis N (2011) Halophytes – an emerging trend in phytoremediation. Int J Phytoremediat 13:959–969

    Article  CAS  Google Scholar 

  • Marcone MF (2003) Batis maritima (Saltwort/Beachwort): a nutritious, halophytic, seed bearings, perennial shrub for cultivation and recovery of otherwise unproductive agricultural land affected by salinity. Food Res Int 36:123–130

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • McCutchen SC, Schnoor JL (2003) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken, pp 233–262

    Book  Google Scholar 

  • Meira M, Silva EP, David JM, David JP (2012) Review of the genus Ipomoea: traditional uses, chemistry and biological activities. Rev Bras Farmacognosia 22:682–713

    Article  CAS  Google Scholar 

  • Millar J, Roots J (2012) Changes in Australian agriculture and land use: implications for future food security. Int J Agric Sustain 10:25–39

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Schachtman DP, Condon AG (1995) The significance of a two-phase growth response to salinity in wheat and barley. Aust J Plant Physiol 22:561–569

    CAS  Google Scholar 

  • Muscolo A, Panuccio MR, Eshel A (2013) Ecophysiology of Pennisetum clandestinum: a valuable salt tolerant grass. Environ Exp Bot 92:55–63

    Article  CAS  Google Scholar 

  • Norman HC, Masters DG, Barrett-Lennard EG (2013) Halophytes as forages in saline landscapes: interactions between plant genotype and environment change their feeding value to ruminants. Environ Exp Bot 92:96–109

    Article  Google Scholar 

  • Ouni Y, Lakhdar A, Rabi M, Aoui AS, Maria AR, Chedly A (2013) Effects of the halophytes Tecticornia indica and Suaeda fruticosa on soil enzyme activities in a Mediterranean sabkha. Int J Phytoremediat 15:188–197

    Article  Google Scholar 

  • Pearlsteina SL, Felger RS, Glenn EP, Harringtond J, Al-Ghanem KA, Nelsona SG (2012) NyPa (Distichlis palmeri): a perennial grain crop for salt water irrigation. J Arid Environ 82:60–70

    Article  Google Scholar 

  • Qadir M, Tubeileh A, Akhtar J, Larbi A, Minhas PS, Khan MA (2008) Productivity enhancement of salt-affected environments through crop diversification. Land Degrad Dev 19:429–453

    Article  Google Scholar 

  • Qureshi AS, McCornick PG, Qadir M, Aslam Z (2008) Managing salinity and waterlogging in the Indus Basin of Pakistan. Agric Water Manag 95:1–10

    Article  Google Scholar 

  • Rabhi M, Talbi O, Atia A, Chedly A, Smaoui A (2008) Selection of halophyte that could be used in the bio reclamation of salt affected soils in arid and semi-arid regions. In: Abdelly C, Öztürk M, Ashraf M, Grignon C (eds) Biosaline agriculture and high salinity tolerance. Birkhäuser, Basel, pp 242–246

    Google Scholar 

  • Rajpurohit KS (1980) Soil salinity and its role on phytogeography of western Rajasthan. Ph.D. Thesis, Jodhpur University, Jodhpur

    Google Scholar 

  • Rameshkumar S, Eswaran K (2013) Ecology, utilization and coastal management of salt tolerant plants (halophytes and mangroves) of Mypad coastal regions, Andhra Pradesh India. Int J Environ Biol 3:1–8

    Google Scholar 

  • Rao GG, Nayak AK, Chinchmalatpure AR, Nath A, Babu VR (2004) Growth and yield of Salvadora persica a facultative halophyte grown on saline black soil (vertic haplustept). Arid Land Res Manag 18:51–61

    Article  Google Scholar 

  • Ravindran KC, Venkatesan K, Balakrishnan V, Chellappan KP, Balasubramanian T (2007) Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem 39:2661–2664

    Article  CAS  Google Scholar 

  • Reddy MP, Shah MT, Patolia JS (2008) Salvadora persica, a potential species for industrial oil production in semiarid saline and alkali soils. Ind Crop Prod 28:273–278

    Article  CAS  Google Scholar 

  • Riadh K, Wided M, Koyro HW, Chedly A (2010) Responses of halophytes to environmental stresses with special emphasis to salinity. Adv Bot Res 53:117–145

    Article  CAS  Google Scholar 

  • Rozema J, Muscolo A, Flowers T (2013) Sustainable cultivation and exploitation of halophyte crops in a salinising world. Environ Exp Bot 92:1–3

    Article  Google Scholar 

  • Ruan CJ, da Silva JAT, Mopper S, Qin P, Lutts S (2010) Halophyte improvement for a salinized world. Crit Rev Plant Sci 29:329–359

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Biol 49:643–668

    Article  CAS  Google Scholar 

  • Sen DN, Rajpurohit KS (1978) Plant distribution in relation to salinity in Indian desert. Abst. Second International Congress of Ecology, Jerusalem. p 340

    Google Scholar 

  • Shabala S, Mackay A (2011) Ion transport in halophytes. Adv Bot Res 57:151–199

    Article  CAS  Google Scholar 

  • Shafiee S, Topal S (2009) When will fossil fuel reserves be diminished? Energy Policy 27:181–189

    Article  Google Scholar 

  • Sharma DK, Singh A (2015) Salinity research in India-achievements, challenges and future prospects. Water Energ Int 58:35–45

    Google Scholar 

  • Stocker O (1928) Das Halophytenproblem. In: Frisch KV, Goldschmidt R, Ruhland W, Winterstein H (eds) Ergebnisse der Biologie. Springer, Berlin, pp 266–353. (German)

    Google Scholar 

  • Stuart JR, Tester M, Gaxiola RA, Flowers TJ (2012) Plants of saline environments. In: Access science. http://www.accessscience.com

  • Vega-Gálvez A, Miranda M, Vergara J, Uribe E, Puente L, Martinez EA (2010) Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. J Sci Food Agric 90:2541–2547

    Article  PubMed  CAS  Google Scholar 

  • Ventura Y, Wuddineh WA, Myrzabayeva M (2011) Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Sci Hortic 128:189–196

    Article  CAS  Google Scholar 

  • Ventura Y, Eshel A, Pasternak D, Sagi M (2015) The development of halophyte-based agriculture: past and present. Ann Bot 115(3):529–540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vera-Estrella R, Barkla JB, Pantoja O (2005) Salt stress in Thellungiella halophila activates Na+ transport mechanism required for salinity tolerance. Plant Physiol 139:1507–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhao ZY, Zhang K, Tian CY (2012) Oil content and fatty acid composition of dimorphic seeds of desert halophyte Suaeda aralocaspica. Afr J Agric Res 7:1910–1914

    Google Scholar 

  • Weber DJ, Ansari R, Gul B, Khan MA (2007) Potential of halophytes as source of edible oil. J Arid Environ 68:315–321

    Article  Google Scholar 

  • Yajun B, Xiaojing L, Weiqiang L (2003) Primary analysis of four salt tolerant plants growing in Hai-He plain, China. In: Leith H, Mochtchenko M (eds) Cash crop halophytes: recent studies. Kluwer Academic Publishers, London, pp 135–138

    Chapter  Google Scholar 

  • Yensen NP (2006) Halophyte uses for the twenty-first century. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Tasks for vegetation science, vol 40. Springer, Berlin, pp 367–396

    Chapter  Google Scholar 

  • Zahran MA, Abdel AA (1982) Halophytes and human welfare. In: Sen DN, Rajpurohit KS (eds) Tasks for vegetation science, vol. 2. Contributions to the ecology of halophytes. Dr. W. Junk Publishers, The Hague

    Google Scholar 

  • Zerai DB, Glenn EP, Chatervedi R, Lu Z, Mamood AN, Nelson SG, Ray DT (2010) Potential for the improvement of Salicornia bigelovii through selective breeding. Ecol Eng 36:730–739

    Article  Google Scholar 

  • Zhu JK, Hasegawa PM, Bressan RA (1997) Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci 16:253–277

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devi, S. et al. (2019). Economic Utilization and Potential of Halophytes. In: Hasanuzzaman, M., Nahar, K., Öztürk , M. (eds) Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes. Springer, Singapore. https://doi.org/10.1007/978-981-13-3762-8_9

Download citation

Publish with us

Policies and ethics